Arformoterol tartrate

Alias: Formoterol; arformoterol; (R,R)-Formoterol; BD 40A; eformoterol; Foradil; formoterol fumarate; Trade names: Atock; Atimos/Atimos Modulite; Foradil/Foradile; Oxeze/Oxis; Perforomist
Cat No.:V3726 Purity: ≥98%
Formoterol (also named as Arformoterol) is a long-acting β2 agonist (LABA) used in the treatment of asthma and COPD (chronic obstructive pulmonary disease).
Arformoterol tartrate Chemical Structure CAS No.: 200815-49-2
Product category: Adrenergic Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Arformoterol tartrate:

  • Formoterol Hemifumarate
  • Arformoterol
  • Arformoterol Maleate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Formoterol (also named as Arformoterol) is a long-acting β2 agonist (LABA) used in the treatment of asthma and COPD (chronic obstructive pulmonary disease). It is sold under several trade names, such as Atock, Atimos/Atimos Modulite, Foradil/Foradile, Oxeze/Oxis, and Perforomist, in three different forms: a dry powder inhaler, a metered-dose inhaler, and an inhalation solution. The combination formulations of mometasone/formoterol and budesonide/formoterol are also available for purchase. Compared to short-acting β2 agonists like salbutamol (albuterol), which have an efficacious duration of 4–6 hours, formoterol exhibits an extended duration of action (up to 12 hours). LABAs, like formoterol, are used in addition to prophylactic corticosteroid therapy as "symptom controllers." Since LABAs are not advised for the treatment of acute asthma, a "reliever" short-acting β2 agonist (such as salbutamol) is still needed.

Biological Activity I Assay Protocols (From Reference)
Targets
Beta-2 adrenergic receptor ( Kd = 2.9 nM )
ln Vitro

In vitro activity: Arformoterol causes the accumulation of cAMP in human bronchial epithelial cells in culture[1].

ln Vivo
Arformoterol (R,R-formoterol) is an active racemic formoterol isomer that is prescribed for the long-term maintenance of bronchoconstriction in COPD patients, including those with emphysema and chronic bronchitis. The release of inflammatory mediators is inhibited by this potent and selective agent, which also relaxes the smooth muscles in the bronchi. Its pharmacological actions are due to the stimulation of intracellular adenyl cyclase, which raises intracellular cyclic adenosine monophosphate (cAMP) levels. Nebulizer administration of aerosolized betamethasone tartrate results in good pulmonary absorption. When COPD patients receive 15 µg arformoterol every 12 hours for 14 days, the mean peak plasma concentration (Cmax) and systemic exposure (AUC0-12h) are 4.3 pg/mL and 34.5 pg.h/mL, respectively. After taking medication, it takes about 30 minutes to reach the median steady state peak plasma concentration (tmax). When COPD patients receive 15 µg of inhaled arformoterol twice daily for 14 days, the mean terminal half-life is 26 hours. At doses of 0.25, 0.5, and 1.0 ng/mL of radiolabeled arformoterol, the binding of arformoterol to human plasma proteins in vitro ranges from 52 to 65%. The primary pathway of metabolism is direct conjugation, or glucuronidation, while the secondary pathway is O-demethylation. In addition to CYP2D6 and CYP2C19, at least five human uridine diphosphoglucuronosyltransferase (UGT) isozymes mediate metabolism. Within 48 hours following the oral administration of a single dose of radiolabeled arformoterol, 63% of the radioactive amount was found in the urine and 11% in the feces. Throughout the course of 14 days, 89% of the total radioactive dose was recovered, with 67% of it found in urine and 22% in feces[1].
Enzyme Assay
Formoterol(Arformoterol) is a brand-new, highly selective β2-adrenergic agonist that shows potential as a β2-agonist with selectively advantageous metabolic effects.
Animal Protocol
C57BL/6 male mice (8 wk old)
10 ng in 0.1 ml saline/20 g body weight
instilled drop-wise in the external nares
References

[1]. Tropical Journal of Pharmaceutical Research, Vol. 9, No. 6, November-December, 2010, pp. 595-603.

[2]. Am J Respir Cell Mol Biol. 2011 Jul; 45(1): 88–94.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H30N2O10
Molecular Weight
494.5
Exact Mass
494.19
Elemental Analysis
C, 55.87; H, 6.12; N, 5.67; O, 32.35
CAS #
200815-49-2
Related CAS #
Formoterol fumarate; 43229-80-7; Arformoterol; 67346-49-0; Arformoterol maleate; 1254575-18-2
Appearance
Solid powder
SMILES
C[C@H](CC1=CC=C(C=C1)OC)NC[C@@H](C2=CC(=C(C=C2)O)NC=O)O.[C@@H]([C@H](C(=O)O)O)(C(=O)O)O
InChi Key
FCSXYHUNDAXDRH-OKMNHOJOSA-N
InChi Code
InChI=1S/C19H24N2O4.C4H6O6/c1-13(9-14-3-6-16(25-2)7-4-14)20-11-19(24)15-5-8-18(23)17(10-15)21-12-22;5-1(3(7)8)2(6)4(9)10/h3-8,10,12-13,19-20,23-24H,9,11H2,1-2H3,(H,21,22);1-2,5-6H,(H,7,8)(H,9,10)/t13-,19+;1-,2-/m11/s
Chemical Name
(2R,3R)-2,3-dihydroxybutanedioic acid;N-[2-hydroxy-5-[(1R)-1-hydroxy-2-[[(2R)-1-(4-methoxyphenyl)propan-2-yl]amino]ethyl]phenyl]formamide
Synonyms
Formoterol; arformoterol; (R,R)-Formoterol; BD 40A; eformoterol; Foradil; formoterol fumarate; Trade names: Atock; Atimos/Atimos Modulite; Foradil/Foradile; Oxeze/Oxis; Perforomist
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~99 mg/mL (~200.2 mM)
Water: N/A
Ethanol: N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0222 mL 10.1112 mL 20.2224 mL
5 mM 0.4044 mL 2.0222 mL 4.0445 mL
10 mM 0.2022 mL 1.0111 mL 2.0222 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00583947 Completed Drug: arformoterol
Drug: levalbuterol
Asthma Sumitomo Pharma America, Inc. January 2008 Phase 2
NCT00773786 Completed Drug: Arformoterol (Brovana)
Drug: Placebo
COPD Trinity Health Of New England October 2008 Phase 4
NCT00064415 Completed Drug: arformoterol
Drug: Salmeterol
Emphysema
Chronic Bronchitis
Sumitomo Pharma America, Inc. June 2002 Phase 3
Biological Data
  • Chlorine (Cl2) exposure increases respiratory resistance and elastance, which are mitigated by arformoterol (Arfor). Am J Respir Cell Mol Biol. 2011 Jul; 45(1): 88–94.
Contact Us Back to top