Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Acetylcholinesterase
|
---|---|
ln Vitro |
Protopine hydrochloride (10–40 μM, 24–96 h) suppresses the EMT process, migration, invasion, and viability of liver cancer cells (HepG2, Huh7) [2]. Protopine (10–40 μM, 24 h) hydrochloride inhibits the PI3K/Akt signaling pathway and increases the production of caspase-3 and caspase-9 in HepG2 and Huh7 cells, hence inducing apoptosis [2]. In HepG2 and Huh7 cells, propepine hydrochloride (10–40 μM, 6 hours) causes ROS generation [2]. Protopine hydrochloride (0–10 μg/mL) decreases norepinephrine (NE) absorption in N1 cells and serotonin transporter (SERT) uptake in S6 cells [3].
|
ln Vivo |
Mice's memory impairment caused by 1 mg/kg of Scopolamine can be ameliorated by intraperitoneal injection of protopine hydrochloride at doses of 0.1 and 1 mg/kg[1]. Protopine (5–20 mg/kg, intraperitoneal) hydrochloride suppresses tumor growth, PI3K/Akt, and caspase-3 cleavage in xenografted BALB/c mice (injected subcutaneously with Huh-7 or HepG2 cells)[2]. In mouse HTR and TST tests, protopine hydrochloride (5–20 mg/kg, intraperitoneal injection) exhibits effects akin to those of an antidepressant[3]. Rats with focal cerebral ischemia injury respond better to protopine hydrochloride injections intraperitoneally (1-4 mg/kg, once day for 3 days)[4].
|
Enzyme Assay |
Protopine is an isoquinoline alkaloid that possesses various biological activities including the anti-tumour activity. However, the effects of protopine on liver carcinoma cells are still elusive. The aim of this study is to examine the effects of protopine on liver carcinoma cells both in vitro and in vivo.
Methods: MTT assay was performed to measure the cell viability. Wound healing and transwell assays were conducted to assess the motility of cells. Cellular apoptosis and ROS levels were measured by the flow cytometry. Western blotting assay was used to measure the change of proteins. The cytotoxicity of protopine was also evaluated in xenograft mice.
Results: Protopine inhibited viabilities and triggered apoptosis via the intrinsic pathway in a caspase-dependent manner in liver carcinoma cells. Furthermore, protopine also induced accumulation of intracellular ROS which further led to the inhibition of PI3K/Akt signalling pathway. Finally, in vivo study showed that protopine also repressed tumour growth in xenograft mice without noticeable toxicity.
Conclusions: Protopine might be used as a potential therapeutic agent for the treatment of liver carcinoma[2].
|
Cell Assay |
Western Blot Analysis[2]
Cell Types: HepG2, Huh7 Tested Concentrations: 10, 20, 40 μM Incubation Duration: 24 h Experimental Results: Induced the cleavage of caspase-3 and caspase-9. diminished Bcl-2 and Bcl-xl level. Induced the release of mitochondrial protein cytochrome c into the cytosol. |
Animal Protocol |
Animal/Disease Models: 5-Hydroxy-DL-tryptophan (5-HTP)-induced mouse model [3]
Doses: 5, 10, 20 mg/kg Route of Administration: intraperitoneal (ip) injection Experimental Results: Increased 5-HTP-induced head Number of hemispheric twitch responses (HTR). Reduce the immobility time tested in the Tail Suspension Test (TST). The protopine isolated from a Chinese herb Dactylicapnos scandens Hutch was identified as an inhibitor of both serotonin transporter and noradrenaline transporter in vitro assays. 5-hydroxy-DL-tryptophan(5-HTP)-induced head twitch response (HTR) and tail suspension test were adopted to study whether protopine has anti-depression effect in mice using reference antidepressant fluoxetine and desipramine as positive controls. In HTR test, protopine at doses of 5, 10, 20 mg/kg dose dependently increase the number of 5-HTP-induced HTR. Protopine at doses of 3.75 mg/kg, 7.5 mg/kg and 30 mg/kg also produces a dose-dependent reduction in immobility in the tail suspension test. The present results open up new possibilities for the use of protopine in the treatment of mood disorders, such as mild and moderate states of depression.[3] Protopine, an isoquinoline alkaloidis, is known to produce many effects such as vasodilation, down-regulation of glutamate levels in brain and decrease of intracellular calcium. However, so far there is no report on the effect of protopine in cerebral ischaemia. In this study, the effect of protopine on the focal cerebral ischaemia was investigated in rats. Male Sprague-Dawley rats were divided into five groups: sham-operated group, vehicle-treated group and three doses of protopine-treated groups (0.98, 1.96 and 3.92 mg/kg). Protopine was intraperitoneally administered to rats once daily for 3 days prior to the ischaemia and 0.9% normal saline to rats in the vehicle-treated group in the same pattern. Rats in the sham-operated group were given 0.9% normal saline without the ischaemia. The focal cerebral ischaemia was induced by the middle cerebral artery occlusion for 24 hr via the intraluminal filament technique. The results showed that pre-treatment with protopine reduced the cerebral infarction ratio and serum lactate dehydrogenase activity, and improved the ischaemia-induced neurological deficit score and histological changes of brain in a dose-dependent manner. The further studies demonstrated that protopine increased superoxide dismutase activity in serum, and decreased total calcium and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive cells in the ischaemic brain tissue in the middle cerebral artery occlusion rats. The results indicate that protopine is able to produce an effective protection on the injury caused by the focal cerebral ischaemia in rats possibly through the multiple effects of calcium antagonism, antioxidation and depression of cell apoptosis.[4] |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Xiang-Fu-Si-Wu Decoction (XFSWD) has been widely used to treat primary dysmenorrhea in clinical practice for hundreds of years and shown great efficacy. One fraction of XFSWD, which was an elution product by macroporous adsorption resin from aqueous extract solution with 60% ethanol (XFSWE), showed great analgesic effect. The present study was conducted to investigate the possible pharmacokinetic and tissue distribution profiles of four major bioactive constituents (berberine, protopine, tetrahydrocoptisine and tetrahydropalmatine) after oral administration of XFSWE in dysmenorrheal symptom rats, and to compare the difference between normal and dysmenorrheal symptom rats. Estradiol benzoate and oxytocin were used to produce dysmenorrheal symptom rat model. The experimental period was seven days. At the final day of experimental period, both normal and dysmenorrheal symptom rats were orally administrated with XFSWE, and then the blood and tissues samples were collected at different time points. Berberine, protopine, tetrahydrocoptisine and tetrahydropalmatine in blood and tissue samples were determined by LC-MS/MS. Pharmacokinetic parameters were calculated from the plasma concentration-time data using non-compartmental methods. The differences of pharmacokinetic parameters among groups were tested by one-way analysis of variance (ANOVA). There were statistically significant differences (P<0.05) in Cmax, Tmax, AUC(0-t), AUC(0-infinity), MRT(0-t), MRT(0-infinity) and CL/F between normal and dysmenorrheal symptom rats that orally administered with same dosage of XFSWE. In tissue distribution study, the results showed that the overall trend was C(Spleen)>C(Liver)>C(Kidney)>C(Uterus)>C(Heart)>C(Lung)>C(Ovary)>C(Brain)>C(Thymus), C(M-60 min)>C(M-120 min)>C(M-30 min)>C(C-60 min)>C(C-120 min)>C(C-30 min). The contents of protopine in liver, spleen and uterus were more than that in other tissues of dysmenorrheal symptom rats. Compared to normal rats, partial contents of the compounds in dysmenorrheal symptom rats' tissues at different time points had significant difference (P<0.05). This study was the first report about pharmacokinetic and tissue distribution investigation in dysmenorrheal symptom animals. The results indicated that berberine, protopine, tetrahydrocoptisine and tetrahydropalmatine have higher uptake and slower elimination in the rats with dysmenorrheal syndrome, which suggests that the rate and extent of drug metabolism were altered in dysmenorrheal syndrome rats. And the results also demonstrated that berberine, protopine and tetrahydropalmatine in normal and dysmenorrheal symptom rats had obvious differences in some organs and time points, suggesting that the blood flow and perfusion rate of the organ were altered in dysmenorrheal symptom animals. PMID:24837303 Metabolism / Metabolites Eschscholtzia californica preparations are in use as phytopharmaceuticals and as herbal drugs. Studies are described on the metabolism and the toxicological analysis of the Eschscholtzia californica alkaloids californine and protopine in rat urine using gas chromatography-mass spectrometry. ... Protopine ... undergoes extensive demethylenation of the 2,3-methylenedioxy group followed by catechol-O-methylation. All phenolic hydroxy metabolites were found to be partly conjugated. The authors' systematic toxicological analysis procedure using full-scan gas chromatography-mass spectrometry after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of the main metabolites of californine and protopine in rat urine after a dose which should correspond to that of drug users. Therefore, use of Eschscholtzia californica preparations should also be detectable in human urine by the authors' systematic toxicological analysis procedure. Xiang-Fu-Si-Wu Decoction (XFSWD) has been widely used to treat primary dysmenorrhea in clinical practice for hundreds of years and shown great efficacy. One fraction of XFSWD, which was an elution product by macroporous adsorption resin from aqueous extract solution with 60% ethanol (XFSWE), showed great analgesic effect. The present study was conducted to investigate the possible pharmacokinetic and tissue distribution profiles of four major bioactive constituents (berberine, protopine, tetrahydrocoptisine and tetrahydropalmatine) after oral administration of XFSWE in dysmenorrheal symptom rats, and to compare the difference between normal and dysmenorrheal symptom rats. Estradiol benzoate and oxytocin were used to produce dysmenorrheal symptom rat model. The experimental period was seven days. At the final day of experimental period, both normal and dysmenorrheal symptom rats were orally administrated with XFSWE, and then the blood and tissues samples were collected at different time points. Berberine, protopine, tetrahydrocoptisine and tetrahydropalmatine in blood and tissue samples were determined by LC-MS/MS. Pharmacokinetic parameters were calculated from the plasma concentration-time data using non-compartmental methods. The differences of pharmacokinetic parameters among groups were tested by one-way analysis of variance (ANOVA). There were statistically significant differences (P<0.05) in Cmax, Tmax, AUC(0-t), AUC(0-infinity), MRT(0-t), MRT(0-infinity) and CL/F between normal and dysmenorrheal symptom rats that orally administered with same dosage of XFSWE. In tissue distribution study, the results showed that the overall trend was C(Spleen)>C(Liver)>C(Kidney)>C(Uterus)>C(Heart)>C(Lung)>C(Ovary)>C(Brain)>C(Thymus), C(M-60 min)>C(M-120 min)>C(M-30 min)>C(C-60 min)>C(C-120 min)>C(C-30 min). The contents of protopine in liver, spleen and uterus were more than that in other tissues of dysmenorrheal symptom rats. Compared to normal rats, partial contents of the compounds in dysmenorrheal symptom rats' tissues at different time points had significant difference (P<0.05). This study was the first report about pharmacokinetic and tissue distribution investigation in dysmenorrheal symptom animals. The results indicated that berberine, protopine, tetrahydrocoptisine and tetrahydropalmatine have higher uptake and slower elimination in the rats with dysmenorrheal syndrome, which suggests that the rate and extent of drug metabolism were altered in dysmenorrheal syndrome rats. And the results also demonstrated that berberine, protopine and tetrahydropalmatine in normal and dysmenorrheal symptom rats had obvious differences in some organs and time points, suggesting that the blood flow and perfusion rate of the organ were altered in dysmenorrheal symptom animals. Eschscholtzia californica preparations are in use as phytopharmaceuticals and as herbal drugs. Studies are described on the metabolism and the toxicological analysis of the Eschscholtzia californica alkaloids californine and protopine in rat urine using gas chromatography-mass spectrometry. ... Protopine ... undergoes extensive demethylenation of the 2,3-methylenedioxy group followed by catechol-O-methylation. All phenolic hydroxy metabolites were found to be partly conjugated. The authors' systematic toxicological analysis procedure using full-scan gas chromatography-mass spectrometry after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of the main metabolites of californine and protopine in rat urine after a dose which should correspond to that of drug users. Therefore, use of Eschscholtzia californica preparations should also be detectable in human urine by the authors' systematic toxicological analysis procedure. |
Toxicity/Toxicokinetics |
Toxicity Summary
IDENTIFICATION AND USE: Protopine is a solid. It is used as medication. HUMAN EXPOSURE AND TOXICITY: Using gene reporter assays performed in transiently transfected HepG2 cells, it was demonstrated that the induction of CYP1A1 expression by protopine was associated with mild or negligible activation of the aryl hydrocarbon receptor. CYP1A mRNA levels induced by protopine in both HepG2 cells and human hepatocytes did not result in elevated CYP1A protein or activity levels. ANIMAL STUDIES: Protopine showed an ability to enhance gamma-aminobutyric acid binding to rat brain synaptic membrane receptors in in vitro radiolabeling studies. Protopine has antiarrhythmic effects and may directly inhibit rapid electrical activity of cardiac cells. Protopine has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic. It is one of the compounds with activity like OPIATE ALKALOIDS, acting at OPIOID RECEPTORS. Properties include induction of ANALGESIA or NARCOSIS. Protopine can selectively bind to but do not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine. Classical antihistaminics antagonize or prevent the action of histamine mainly in immediate hypersensitivity. They act in the bronchi, capillaries, and some other smooth muscles, and are used to prevent or allay motion sickness, seasonal rhinitis, and allergic dermatitis and to induce somnolence. Protopine can also function as platelet aggregation inhibitors which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Protopine inhibits the contractility of isolated cardiac papillary muscles and the proliferation of vascular smooth muscle cells induced by endothelin. It also shortens action potential duration and prolongs the effective refractory period in guinea pig cardiac papillary muscles. The protective effect on rat heart from ischemia_reperfusion damage and the relaxation of rat thoracic aorta induced by protopine have been related to the inhibition of Ca2+ influx through both voltage- and receptor-operated Ca2+ channels. Protopine has been the focus of a large number of biological studies in which they both exhibited, for instance, anti-parasitic activity and only weak cytotoxicity in comparison with other types of isoquinoline alkaloids. Protopine was found to be cytoprotective against oxidative stress induced cell death in vitro. The alkaloid was shown to have anti-arrhythmic, anti-thrombotic, anti-inflammatory, and hepatoprotective effects in animal models. The biological activity of protopine may be associated with its ability to inhibit calcium, sodium, and potassium channels. (PMID:15588728; PMID:21419197; L2104) Interactions The antiarrhythmic effects of protopine on experimental arrhythmia were studied in various animals. Protopine elevated the dose of aconitine needed to induce VP, VT, and VF in rats and increased the dose of strophanthin (strophanthine K) that induced VP in guinea pigs. It also shortened the duration of central arrhythmia induced by aconitine and the duration of arrhythmia induced by benzene-epinephrine (adrenaline) in rats. It prevented rats and mice from developing arrhythmia induced by intravenous calcium chloride and inhalation of chloroform, respectively. In rabbits, the drug raised VFT. It was concluded that protopine has antiarrhythmic effects and may directly inhibit rapid electrical activity of cardiac cells. Lu Z et al; Chin Pharm J (Zhongguo Yaoxue Zazhi); 30: 81-84 (REF 9) (1995) Antidote and Emergency Treatment /SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. Non-Human Toxicity Values LD50 Guinea pig ip 116 mg/kg LD50 Guinea pig oral 237 mg/kg LD50 Mouse ip 482 mg/kg |
References |
|
Additional Infomation |
Mechanism of Action
CACL2 (0.2 G/KG, IV) INDUCED FIBRILLATION OF THE RAT CARDIAC VENTRICLES FOR 2 SEC AND CAUSED DEATH OF THE ANIMALS. PROTOPINE-HCL (10 MG/KG) PROLONGED THE VENTRICULAR FIBRILLATION TO 186 SEC. IT ALSO RESTORED THE SINUS RHYTHM 3 MIN AFTER ITS ADMIN IN ALL TREATED ANIMALS. |
Molecular Formula |
C20H20CLNO5
|
---|---|
Molecular Weight |
389.8295
|
Exact Mass |
389.103
|
CAS # |
6164-47-2
|
Related CAS # |
Protopine;130-86-9
|
PubChem CID |
22543
|
Appearance |
PRISMS FROM ALC
|
Boiling Point |
547.5ºC at 760 mmHg
|
Melting Point |
208ºC
|
Flash Point |
284.9ºC
|
LogP |
3.297
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
27
|
Complexity |
542
|
Defined Atom Stereocenter Count |
0
|
SMILES |
Cl.CN1CCC2=CC3OCOC=3C=C2C(=O)CC2=C(C3OCOC=3C=C2)C1
|
InChi Key |
NWNVDSJZGYDVQW-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C20H19NO5.ClH/c1-21-5-4-13-7-18-19(25-10-24-18)8-14(13)16(22)6-12-2-3-17-20(15(12)9-21)26-11-23-17;/h2-3,7-8H,4-6,9-11H2,1H3;1H
|
Chemical Name |
15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.04,12.06,10.018,22]tetracosa-1(17),4,6(10),11,18(22),23-hexaen-3-one;hydrochloride
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5652 mL | 12.8261 mL | 25.6522 mL | |
5 mM | 0.5130 mL | 2.5652 mL | 5.1304 mL | |
10 mM | 0.2565 mL | 1.2826 mL | 2.5652 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.