GSK2110183

Alias: Afuresertib-F; Afuresertib-F free base; GSK-2110183-analog; GSK 2110183-analog; GSK2110183-analog
Cat No.:V3837 Purity: ≥98%
GSK2110183, an analog ofAfuresertib, is a potent, orally bioavailable andATP-competitive Akt inhibitor with Ki of 0.08 nM, 2 nM, and 2.6 nM for Akt1, Akt2, and Akt3, respectively.
GSK2110183 Chemical Structure CAS No.: 1047634-63-8
Product category: Akt
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of GSK2110183:

  • GSK2110183 HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

GSK2110183, an analog of Afuresertib, is a potent, orally bioavailable and ATP-competitive Akt inhibitor with Ki of 0.08 nM, 2 nM, and 2.6 nM for Akt1, Akt2, and Akt3, respectively. GSK2110183 is a protein kinase B (Akt) inhibitor with potential anticancer properties. The PI3K/Akt signaling pathway, tumor cell proliferation, and tumor cell apoptosis may all be inhibited as a result of the Akt inhibitor GSK2110183's binding to and inhibition of Akt activity. The PI3K/Akt signaling pathway is frequently involved in the development of tumors, and aberrant PI3K/Akt signaling may play a role in the development of tumor resistance to various antineoplastic agents.

Biological Activity I Assay Protocols (From Reference)
Targets
Akt1 (Ki = 0.08 nM); Akt2 (Ki = 2 nM); Akt3 (Ki = 2.6 nM)
ln Vitro
Afuresertib inhibits the kinase activity of the E17K AKT1 mutant protein with EC50 of 0.2 nM. Afuresertib has a concentration-dependent impact on the phosphorylation levels of several AKT substrates, including GSK3b, PRAS40, FOXO, and Caspase 9. Afuresertib has an overall sensitivity of 65% for hematological cell lines (EC50 1 M). In response to afuresertib, 21% of tested solid tumor cell lines have an EC50 1 M. [1]
ln Vivo
Afuresertib (p. o.) doses of 10, 30, or 100 mg/kg per day cause 8, 37, or 61% TGI in mice with BT474 breast tumor xenografts. Treatments with 10, 30, and 100 mg/kg of afuresertib result in 23, 37, and 97% TGI, respectively, in mice with SKOV3 ovarian tumor xenografts. [1]
Enzyme Assay
Afuresertib (p.o.) is dosed at 10, 30, or 100 mg/kg per day to mice with BT474 breast tumor xenografts, resulting in 8, 37, or 61% TGI, respectively. 10, 30, and 100 mg/kg of afuresertib are administered to mice containing ovarian tumor xenografts bearing the SKOV3 gene, and these doses produce TGI of 23, 37, and 97%, respectively. [1] With the aid of a filter binding assay and progress curve analysis, the inhibitor's true potency (Ki*) is first ascertained at low enzyme concentrations (0.1 nM AKT1, 0.7 nM AKT2, and 0.2 nM AKT3). In the filter binding assay, an enzyme and an inhibitor pre-mix are incubated for 1 hour before being added to a GSK peptide (Ac-KKGGRARTSS-FAEPG-amide) and [γ33P] ATP.
Cell Assay
To measure the growth inhibition caused by the compounds at 0–30 M, a 3-day proliferation assay using CellTiter-Glo is carried out. The rate of cell growth is measured in comparison to untreated (DMSO) controls. In the Assay Client application, EC50 values are calculated from inhibition curves using a 4- or 6-parameter fitting algorithm.
Animal Protocol
Female athymic nude and SCID mice bearing SKOV3 or BT474 tumors
100 mg/kg
p.o.
References

[1]. PLoS One . 2014 Jun 30;9(6):e100880.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₁₈H₁₆CL₂F₂N₄OS
Molecular Weight
445.31
Exact Mass
444.039
Elemental Analysis
C, 48.55; H, 3.62; Cl, 15.92; F, 8.53; N, 12.58; O, 3.59; S, 7.20
CAS #
1047634-63-8
Related CAS #
GSK2110183 analog 1 hydrochloride;2070009-64-0
Appearance
Solid powder
SMILES
CN1C(=C(C=N1)Cl)C2=C(SC(=C2)C(=O)N[C@@H](CC3=CC(=C(C=C3)F)F)CN)Cl
InChi Key
AHDFWNJLFALBJP-JTQLQIEISA-N
InChi Code
InChI=1S/C18H16Cl2F2N4OS/c1-26-16(12(19)8-24-26)11-6-15(28-17(11)20)18(27)25-10(7-23)4-9-2-3-13(21)14(22)5-9/h2-3,5-6,8,10H,4,7,23H2,1H3,(H,25,27)/t10-/m0/s1
Chemical Name
N-[(2S)-1-amino-3-(3,4-difluorophenyl)propan-2-yl]-5-chloro-4-(4-chloro-2-methylpyrazol-3-yl)thiophene-2-carboxamide
Synonyms
Afuresertib-F; Afuresertib-F free base; GSK-2110183-analog; GSK 2110183-analog; GSK2110183-analog
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~ 10 mM
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2456 mL 11.2281 mL 22.4563 mL
5 mM 0.4491 mL 2.2456 mL 4.4913 mL
10 mM 0.2246 mL 1.1228 mL 2.2456 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Status Interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01531894 Completed Drug: GSK2110183
(afuresertib)
Cancer Novartis Pharmaceuticals February 8, 2012 Phase 2
NCT01428492 Completed Drug: GSK2110183
Drug: Bortezomib
Multiple Myeloma Novartis December 2011 Phase 1
NCT01476137 Completed Drug: GSK1120212
Drug: GSK2110183
Cancer GlaxoSmithKline October 26, 2011 Phase 1
NCT00881946 Completed Drug: GSK21110183 Hematologic Malignancies Accenture July 2009 Phase 1
Phase 2
NCT01395004 Completed Drug: GSK2110183 Langerhans Cell Histiocytosis GlaxoSmithKline November 2011 Phase 2
Biological Data
  • Effect of GSK2110183 on AKT signaling and growth inhibition in human cancer cell lines. PLoS One . 2014 Jun 30;9(6):e100880.
  • Effect of GSK2110183 on AKT signaling and growth inhibition in human cancer cell lines. PLoS One . 2014 Jun 30;9(6):e100880.
Contact Us Back to top