Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ln Vitro |
Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
|
---|---|
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation No information is available on the use of oral aminolevulinic acid during breastfeeding. To minimize exposure of the infant, breastfeeding can be withheld for 24 hours after an oral dose. Breastfeeding is not expected to result in exposure of the child to topical aminolevulinic acid due to negligible systemic absorption. Aminolevulinic acid-induced photodynamic therapy has been used successfully to treat various skin lesions of the nipple. This treatment appeared to preserve nipple anatomy for breastfeeding. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
References |
|
Additional Infomation |
5-aminolevulinic acid hydrochloride is a hydrochloride that is the monohydrochloride of 5-aminolevulinic acid. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. Used in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It has a role as an antineoplastic agent, a photosensitizing agent, a dermatologic drug and a prodrug. It contains a 5-ammoniolevulinic acid.
Aminolevulinic Acid Hydrochloride is the hydrochloride salt form of aminolevulinic acid, an aminoketone, used for local photosensitizing therapy. Aminolevulinic acid (ALA) is a metabolic pro-drug that is converted into the photosensitizer protoporphyrin IX (PpIX), which accumulates intracellularly. Upon exposure to light of appropriate wavelength (red, or blue), PpIX catalyzes oxygen to singlet oxygen, an intracellular toxin, which can further react to form superoxide and hydroxyl radicals. This leads to cellular cytotoxic effects. A compound produced from succinyl-CoA and GLYCINE as an intermediate in heme synthesis. It is used as a PHOTOCHEMOTHERAPY for actinic KERATOSIS. See also: Aminolevulinic Acid (has active moiety). Drug Indication Gliolan is indicated in adult patients for visualisation of malignant tissue during surgery for malignant glioma (World Health Organization grade III and IV). Treatment of actinic keratosis of mild to moderate severity on the face and scalp (Olsen grade 1 to 2; see section 5. 1) and of field cancer ization in adults. Treatment of superficial and/or nodular basal cell carcinoma unsuitable for surgical treatment due to possible treatment-related morbidity and/or poor cosmetic outcome in adults. |
Molecular Formula |
C5H10CL15NO3
|
---|---|
Molecular Weight |
168.58
|
Exact Mass |
168.032
|
CAS # |
116571-80-3
|
Related CAS # |
5-Aminolevulinic acid hydrochloride;5451-09-2
|
PubChem CID |
123608
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
0.881
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
10
|
Complexity |
121
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C(=O)(C[15NH2])CCC(=O)O.Cl
|
InChi Key |
ZLHFONARZHCSET-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C5H9NO3.ClH/c6-3-4(7)1-2-5(8)9;/h1-3,6H2,(H,8,9);1H
|
Chemical Name |
5-amino-4-oxopentanoic acid;hydrochloride
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 5.9319 mL | 29.6595 mL | 59.3190 mL | |
5 mM | 1.1864 mL | 5.9319 mL | 11.8638 mL | |
10 mM | 0.5932 mL | 2.9660 mL | 5.9319 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.