yingweiwo

Tolazoline

Alias: Imidaline; NSC-35110; NSC35110; NSC 35110; Tolazoline; Benzalolin; Divascol; 59-98-3; 2-Benzylimidazoline; 2-Benzyl-4,5-dihydro-1H-imidazole; Benzidazol; Benzazoline; 2-Benzyl-2-imidazoline; Benzolin; Pridazole; Priscol; Priscoline
Cat No.:V4217 Purity: ≥98%
Tolazoline is a potent, non-selective competitive α-adrenergic receptor antagonist.
Tolazoline
Tolazoline Chemical Structure CAS No.: 59-98-3
Product category: Adrenergic Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
25g
50g
Other Sizes

Other Forms of Tolazoline:

  • Tolazoline HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tolazoline is a potent, non-selective competitive α-adrenergic receptor antagonist. In cases of persistent pulmonary hypertension in neonates (PPHN), tolazoline, a pulmonary vasodilator, is prescribed to reduce pulmonary vascular resistance (PVR). Tolazoline exhibits both histamine agonist and mildly alpha-adrenergic blocking properties. Vascular resistance and pulmonary arterial pressure are typically lowered by tolazoline.

Biological Activity I Assay Protocols (From Reference)
Targets
α-adrenoceptor
ln Vitro
In vitro activity: Tolazoline is a pulmonary vasodilator that is recommended for use in persistent pulmonary hypertension of the newborn (PPHN) to reduce pulmonary vascular resistance (PVR). Tolazoline exhibits both histamine agonist and modest alpha-adrenergic blocking properties. Vascular resistance and pulmonary arterial pressure are typically decreased by tolazoline.[1] Compared to SNP, tolazoline is less broadly effective against all spasmogens that have been studied. However, in human radial arteries, it might be useful in preventing vasospasm mediated by alpha-adrenoceptors.[2]

In vitro activity: Tolazoline (Imidaline) can be produced by heterocycling ethylene diamine with the ethyl ester of iminophenzylacetic acid to yield the desired product. Tolazoline (Imidaline) shares a structure with α-adrenergic agonists, which are sympathomimetics that reduce edema.

ln Vivo
Studies have investigated the pharmacologic mechanism of 2-(4'-isothiocyanatobenzyl) imidazoline (IBI) and analogs for interaction with imidazoline receptors (IRs), alpha-adrenergic receptors (alpha-ARs), and calcium channels in cardiovascular muscle systems. IBI differs from tolazoline by substitution of an electrophilic isothiocyanato (NCS) group. Unlike tolazoline, which is a partial alpha-AR agonist, IBI produced an irreversible, slow-onset, and sustained contraction of rat aorta with an median effective concentration (EC50) value of 5 microM, and a maximal contraction (116%) greater than that of phenylephrine (100%) and tolazoline (59%). The IBI-induced contractions were dependent on calcium channels and independent of alpha-ARs or IRs. Similarly, structure-activity relation studies in rat aortic smooth muscles on a series of synthesized IBI analogs indicated that NCS analogs, but not those without the NCS group, exhibited effects by a non-alpha-AR, non-IR, but a calcium channel-dependent mechanism. Thus the presence of an intact IBI ring in these analogs is not a requirement for these activities. Further, IBI inhibited dihydropyridine (DHP, [3H]PN 200-110 and [3H]Bay K 8644) binding to L-type calcium channels of T-tubule membranes in rabbit skeletal muscle. In contrast to nifedipine, IBI and NCS derivatives (nifedipine-NCS, naphazoline-NCS) only partially (50-88%) displaced specific binding of these radioligands. A single site of noncooperative interaction was observed for nifedipine (nH = 0.97), whereas tolazoline-NCS (IBI, nH = 1.46) and nifedipine-NCS (nH = 1.37) exhibited a positive cooperativity in binding to DHP sites. These receptor-binding data indicate that NCS derivatives bind to L-type calcium channels and interact allosterically with DHP-binding sites. Direct binding of the NCS group to specific nucleophilic protein sites of the calcium channel may be responsible for its activation and the subsequent contractile effects of IBI. [1]
Cell Assay
Tolazoline (10(-9)-10(-4) M) or sodium nitroprusside (SNP, 10(-9)-10(-4) M) were cumulatively applied on radial artery rings precontracted submaximally with noradrenaline, endothelin-1, thromboxane analogue, U46619, or potassium chloride. In addition, some rings were pretreated with tolazoline (4 x 10(-6) M) for 30 minutes and the contractile response curve to noradrenaline was assessed in its presence. Results: tolazoline effectively reversed noradrenaline-induced contractions in the radial artery, whereas it failed to produce remarkable relaxations on rings contracted with other spasmogenic agents, while SNP overcame the contractions induced by all spasmogens to a similar extent. In addition, brief pretreatment of radial artery rings with tolazoline significantly inhibited the contractions to noradrenaline. Conclusions: tolazoline is not as broadly effective as SNP against all spasmogens investigated; however, it may be effective in counteracting alpha-adrenoceptor-mediated vasospasm in human radial arteries. [2]
Toxicity/Toxicokinetics
infant TDLo intravenous 48 mg/kg/47H-C GASTROINTESTINAL: ULCERATION OR BLEEDING FROM DUODENUM; GASTROINTESTINAL: ULCERATION OR BLEEDING FROM SMALL INTESTINE Australian Paediatric Journal., 22(221), 1986 [PMID:3767790]
human TDLo intravenous 150 ug/kg CARDIAC: CHANGE IN RATE; VASCULAR: OTHER CHANGES; SKIN AND APPENDAGES (SKIN): SWEATING: OTHER Folia Medica, 27(729), 1941
rat LD50 oral 1200 mg/kg Drugs in Japan, 6(511), 1982
rat LD50 intraperitoneal 100 mg/kg Drugs in Japan, 6(511), 1982
rat LD50 intravenous 85 mg/kg Drugs in Japan, 6(511), 1982
References

[1]. J Cardiovasc Pharmacol. 1998 May;31(5):721-33.

[2]. Ann Thorac Surg. 2006 Jan;81(1):125-31.

Additional Infomation
Tolazoline is a member of the class of imidazoles that is 4,5-dihydro-1H-imidazole substituted by a benzyl group. It has a role as an alpha-adrenergic antagonist, an antihypertensive agent and a vasodilator agent.
A vasodilator that apparently has direct actions on blood vessels and also increases cardiac output. Tolazoline can interact to some degree with histamine, adrenergic, and cholinergic receptors, but the mechanisms of its therapeutic effects are not clear. It is used in treatment of persistent pulmonary hypertension of the newborn.
A vasodilator that apparently has direct actions on blood vessels and also increases cardiac output. Tolazoline can interact to some degree with histamine, adrenergic, and cholinergic receptors, but the mechanisms of its therapeutic effects are not clear. It is used in treatment of persistent pulmonary hypertension of the newborn.
See also: Tolazoline Hydrochloride (has salt form).
Drug Indication
For the treatment of pulmonary artery anomalies
Mechanism of Action
Vasodilation by means of a direct effect on peripheral vascular smooth muscle and indirect effects produced, in part, by release of endogenous histamine; tolazoline has moderate alpha-adrenergic blocking activity and has histamine agonist activity. Tolazoline usually reduces pulmonary arterial pressure and vascular resistance.
Tolazoline hydrochloride is a member of benzenes.
A vasodilator that apparently has direct actions on blood vessels and also increases cardiac output. Tolazoline can interact to some degree with histamine, adrenergic, and cholinergic receptors, but the mechanisms of its therapeutic effects are not clear. It is used in treatment of persistent pulmonary hypertension of the newborn.
See also: Tolazoline (has active moiety).
The radial artery is increasingly being used in coronary revascularization as an alternative conduit to a saphenous vein graft. Its perfect endothelial capacity provides a high patency rate comparable with the internal mammary artery (IMA). However, its spastic characteristics cause difficulties during its intraoperative preparation and may lead to early postoperative graft failure. Thus, treatment and/or prevention of radial artery spasm with an effective vasodilator agent is essential for its longevity. Endogenous vasoconstrictors, including noradrenaline, endothelin-1, and thromboxane A2, are likely to play a role in the pathogenesis of graft spasm. In the present study, we evaluated the vasorelaxant effect of tolazoline, a nonselective alpha-adrenoceptor blocker, against the contractions induced by various spasmogenic agents in an isolated human radial artery.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H12N2
Molecular Weight
160.21
Exact Mass
160.1
Elemental Analysis
C, 74.97; H, 7.55; N, 17.48
CAS #
59-98-3
Related CAS #
Tolazoline hydrochloride; 59-97-2
PubChem CID
5504
Appearance
White to off-white solid powder
Density
1.1±0.1 g/cm3
Boiling Point
338.2±21.0 °C at 760 mmHg
Melting Point
66-69 °C(lit.)
Flash Point
158.3±22.1 °C
Vapour Pressure
0.0±0.7 mmHg at 25°C
Index of Refraction
1.596
LogP
2.65
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
2
Heavy Atom Count
12
Complexity
169
Defined Atom Stereocenter Count
0
SMILES
N1([H])C([H])([H])C([H])([H])N=C1C([H])([H])C1C([H])=C([H])C([H])=C([H])C=1[H]
InChi Key
JIVZKJJQOZQXQB-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H12N2/c1-2-4-9(5-3-1)8-10-11-6-7-12-10/h1-5H,6-8H2,(H,11,12)
Chemical Name
2-benzyl-4,5-dihydro-1H-imidazole
Synonyms
Imidaline; NSC-35110; NSC35110; NSC 35110; Tolazoline; Benzalolin; Divascol; 59-98-3; 2-Benzylimidazoline; 2-Benzyl-4,5-dihydro-1H-imidazole; Benzidazol; Benzazoline; 2-Benzyl-2-imidazoline; Benzolin; Pridazole; Priscol; Priscoline
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: >10 mg/mL
Water: N/A
Ethanol: N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.2418 mL 31.2090 mL 62.4181 mL
5 mM 1.2484 mL 6.2418 mL 12.4836 mL
10 mM 0.6242 mL 3.1209 mL 6.2418 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us