yingweiwo

RX821002

Alias: RX-821002; RX 821002; 2-Methoxyidazoxan; 102575-24-6; 1H-Imidazole, 2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)-4,5-dihydro-; alpha-methoxyidazoxan; 2-(3-methoxy-2H-1,4-benzodioxin-3-yl)-4,5-dihydro-1H-imidazole; RX821002
Cat No.:V14152 Purity: ≥98%
RX821002 is a novel and potent α2-adrenoceptor antagonist
RX821002
RX821002 Chemical Structure CAS No.: 102575-24-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of RX821002:

  • 2-Methoxyidazoxan monohydrochloride (RX821002 hydrochloride)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
RX821002 is a novel and potent α2-adrenoceptor antagonist
Biological Activity I Assay Protocols (From Reference)
Targets
Alpha 2-adrenoceptor
ln Vitro
2-methoxyidazoxan (RX 8210022) is a highly selective alpha 2-adrenoceptor antagonist with little or no imidazoline antagonist effect. RX821002 is a drug that elicits noradrenaline release in the cortex by blocking alpha2-adrenoautoreceptors in the locus coeruleus [1].
ln Vivo
2-Methoxyidazoxan monohydrochloride/RX 821002 (1 mg/kg) improves the ability of rats with neonatal ventral hippocampal lesion (NVHL) to move about in new settings. 2-The effects of 2-methylidazoxan monohydrochloride on locomotion are biphasic, exhibiting a reduction at first before intensification [3].
Rats with a neonatal ventral hippocampal lesion (NVHL) are used to model schizophrenia. They show enhanced locomotion and difficulties in learning after puberty. Such behavioral modifications are strengthened by dopaminergic psychostimulant drugs, which is also relevant for schizophrenia because illustrating its dopaminergic facet. But it remains questionable that only dopaminergic drugs elicit such effects. The behavioral effects could simply represent a non specific arousal, in which case NVHL rats should also be hyper-responsive to other vigilance enhancing drugs. We administered an adenosine (caffeine) or an adrenaline receptor antagonist, (RX 821002) at doses documented to modify alertness of rats, respectively 5 mg/kg and 1 mg/kg. Rats were selected prior to the experiments using magnetic resonance imaging (MRI). Each group contained typical and similar NVHL lesions. They were compared to sham lesioned rats. We evaluated locomotion in a new environment and the capacity to remember a visual or acoustic cue that announced the occurrence of food. Both caffeine and RX82100 enhanced locomotion in the novel environment, particularly in NVHL rats. But, RX82100 had a biphasic effect on locomotion, consisting of an initial reduction preceding the enhancement. It was independent of the lesion. Caffeine did not modify the learning performance of NVHL rats. But, RX 821002 was found to facilitate learning. Patients tend to intake much more caffeine than healthy people, which has been interpreted as a means to counter some cognitive deficits. This idea was not validated with the present results. But adrenergic drugs could be helpful for attenuating some of their cognitive deficits[3].
Enzyme Assay
Four antagonists were examined for their ability to differentiate alpha 2A-from the orthologous alpha 2D-adrenoceptors. The antagonists were (2S,12bS)1',3'-dimethylspiro(1,3,4,5',6,6',7,12b-octah ydro-2H- benzo[b]furo[2,3-a]quinolizine)-2,4'-pyrimidin-2'-one (MK912), 2-[2-(methoxy-1,4-benzodioxanyl)imidazoline (RX 821002 ), efaroxan and benoxathian. The alpha 2-autoreceptors in rabbit brain cortex were chosen as alpha 2A-and the alpha 2-autoreceptors in guinea-pig brain cortex as alpha 2D-adrenoceptors. Slices of the brain cortex were preincubated with 3H-noradrenaline and then superfused and stimulated electrically by brief pulse trains (4 pulses, 100 Hz) that led to little, if any, alpha 2-autoinhibition. 5-Bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14,304) was used as an alpha 2-adrenoceptor agonist. UK 14, 304 decreased the stimulation-evoked overflow of tritium. The antagonists shifted the concentration-inhibition curve of UK 14, 304 to the right in an apparently competitive manner. Dissociation constants of the antagonists were calculated from the shifts. MK 912, RX 821002 and efaroxan had markedly higher affinity for (guinea-pig) alpha 2D-adrenoceptors (pKd values 10.0, 9.7 and 9.1, respectively) than for (rabbit) alpha 2A-adrenoceptors (pKd 8.9, 8.2 and 7.6, respectively). Benoxathian had higher affinity for alpha 2A-(pKd 7.4) than for alpha 2D-adrenoceptors (pKd 6.9). Ratios calculated from the Kd values of the four compounds differentiated between alpha 2A and alpha 2D up to 100 fold. It is concluded that MK 912, RX 821002 , efaroxan and benoxathian are antagonists with high power to differentiate alpha 2A-from alpha 2D-adrenoceptors[2].
Animal Protocol
Selecting subjects using MRI imaging techniques[3]
Twenty-one day-old lesioned pups were subjected to an MRI session under isoflurane anesthesia. MRI was performed on a small-animal scanner operating at 4.7 T (TR/TE/TEeff: 3000/30 ms/60 ms). A series of 10 slices (256 × 256 pixels) was generated over a 1 cm long section of the brain, rostral to the cerebellum-cerebrum gap, as in our previous studies and those conducted by others (Angst et al., 2007; Macedo et al., 2008, 2010, 2012; Bertrand et al., 2010; Sandner et al., 2010, 2011, 2012), the purpose being to select triplets of lesioned rats (1 saline, 1 caffeine and 1 RX 821002), where each member of the triplet had about the same MRI image in terms of the location and symmetry of the lesion (examples are shown in Figure 1). We obtained 9 triplets of lesions (27 lesioned rats), to which we added 27 sham-lesioned controls. Rats that could not be included in a triplet were transferred to other research protocols.
Lesioned areas were drawn on MRI coronal sections. The numbers of pixels of the left and right lesions were summed up over successive rostro-caudal sections. The sum represents then the estimated volumes of the lesions. It was submitted to an ANOVA, with lesion side as within-group factor and treatment as between-group factor. Another ANOVA was computed on the sum of left and right lesions with the three rats in each triplet as within-group factor. The threshold for statistical significance for all statistical computations was set to p < 0.05.
Treatments[3]
A 3 × 2 experimental design was used (6 groups of 9 rats). The treatment was applied before each test and each learning session. The latency between injection and the beginning of the test was 10 min for caffeine (5 mg/kg) and 20 min for RX 821002 (1 mg/kg), dissolved in saline (vehicle: veh) in a final volume of 1 ml and injected i.p. Control rats received a saline injection 10 or 20 min before testing. The following groups were considered: 9 NVHL rats treated with caffeine (caf group), 9 NVHL rats treated with RX 821002 (RX group), and 9 NVHL rats which were given saline (veh group), plus three groups of 9 sham-lesioned rats which received the same treatments.
References

[1]. Head GA. Importance of imidazoline receptors in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci. 1995;763:531-540.

[2]. Antagonists that differentiate between alpha 2A-and alpha 2D-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1996;353(3):245-249.

[3]. Effects of caffeine or RX821002 in rats with a neonatal ventral hippocampal lesion. Front Behav Neurosci. 2014;8:15. Published 2014 Jan 28.

Additional Infomation
2-methoxyidazoxan is a benzodioxine that is idazoxan substituted at position 2 by a methoxy group. It has a role as an alpha-adrenergic antagonist. It is a benzodioxine, a cyclic ketal and a member of imidazolines. It is functionally related to an idazoxan.
Adrenergic alpha-Antagonists: Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma.
Increasing evidence indicates that the hypotensive effect of centrally acting antihypertensive drugs is not due to stimulation of alpha 2-adrenoceptors but to action on imidazoline receptors (IR). This has led to the development and recent clinical use of second generation agents such as rilmenidine and moxonidine that possess a much greater selectivity toward these nonadrenergic receptors. However, relatively few studies have examined the role of these receptors in conscious animals or have adequately accounted for the alpha 2-adrenoceptor antagonist properties of IR antagonists such as idazoxan. We have taken the approach of initially calibrating the alpha 2-adrenoceptor antagonist potency of intracisternally (ic) administered idazoxan and the IR-1 receptor antagonist efaroxan against 2-methoxyidazoxan, a highly selective alpha 2-adrenoceptor antagonist with little or no imidazoline antagonist effect. This was done using alpha-methyldopa, a hypotensive agent affecting only alpha 2-adrenoceptors. Thus, we chose doses of the antagonists with equal alpha 2-adrenoceptor blocking action such that differences in the ability of idazoxan or efaroxan compared to 2-methoxy-idazoxan to reverse the hypotension produced by rilmenidine, moxonidine, or clonidine indicate an interaction with IR. By this method we found that the hypotensive effects of rilmenidine and moxonidine at moderate intracisternal doses were more readily reversed by the imidazoline antagonists than by 2-methoxy-idazoxan, indicating that IR were largely responsible for their hypotensive actions. By contrast, clonidine's effects were equally reversed by all antagonists, suggesting interaction mainly with alpha 2-adrenoceptors. In conscious rabbits with chronic renal sympathetic nerve electrodes we examined the effect of rilmenidine and alpha-methyldopa on the renal sympathetic baroreflex. Both drugs reduced renal sympathetic nerve activity and sympathetic baroreflex responses, but only the effect of rilmenidine was preferentially reversed by idazoxan. Thus, both IR and central alpha 2-adrenoceptor receptors can influence the renal baroreflex, but the former are relatively more important for the actions of rilmenidine. We recently examined the possible sites of action of rilmenidine in anesthetized rabbits and showed that sixfold lower doses were required to reduce blood pressure when the drug was injected into the rostral ventrolateral medulla compared to intracisternal administration. At this site rilmenidine also reduced renal sympathetic tone and inhibited renal sympathetic baroreflex responses. By contrast, rilmenidine was relatively ineffective when injected into the nucleus of the solitary tract. These experiments support the view that rilmenidine acts primarily at IR in the rostral ventrolateral medulla to reduce sympathetic tone and modulate sympathetic baroreflexes.[1]
Contrasting with the lack of improvement in the performance of rats under caffeine, RX821002, the alpha2-adrenoreceptor antagonist, improved learning. Research about the contribution of noradrenergic systems to schizophrenia has yielded inconsistent results (van Kammen and Antelman, 1984; van Kammen and Kelley, 1991; Yamamoto et al., 1994; Friedman et al., 1999; Klimek et al., 1999). Interest has been shown, however, in the prefrontal noradrenergic mechanisms and the potential role of alpha-2-adrenoreceptor antagonism in the antipsychotic effects of atypical neuroleptics, particularly considering that co-medication of fluphenazine with the alpha-2-adrenoreceptor antagonist idazoxan enhanced its antipsychotic and cognitive effectiveness (Litman et al., 1996). Our results complement these observations, highlighting the importance of adrenoreceptors as targets for treating cognitive difficulties like those experienced by patients with schizophrenia (McAllister, 2001; Masana et al., 2011).[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H14N2O3
Molecular Weight
234.25
Exact Mass
234.1
CAS #
102575-24-6
Related CAS #
109544-45-8 (HCl); 102575-24-6
PubChem CID
108094
Appearance
Typically exists as solid at room temperature
Density
1.34g/cm3
Boiling Point
407.9ºC at 760mmHg
Flash Point
200.5ºC
Vapour Pressure
1.72E-06mmHg at 25°C
Index of Refraction
1.617
LogP
0.566
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
2
Heavy Atom Count
17
Complexity
321
Defined Atom Stereocenter Count
0
SMILES
O1C2C=CC=CC=2OCC1(OC)C1NCCN=1
InChi Key
HQGWKNGAKBPTBX-UHFFFAOYSA-N
InChi Code
InChI=1S/C12H14N2O3/c1-15-12(11-13-6-7-14-11)8-16-9-4-2-3-5-10(9)17-12/h2-5H,6-8H2,1H3,(H,13,14)
Chemical Name
2-(3-methoxy-2H-1,4-benzodioxin-3-yl)-4,5-dihydro-1H-imidazole
Synonyms
RX-821002; RX 821002; 2-Methoxyidazoxan; 102575-24-6; 1H-Imidazole, 2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)-4,5-dihydro-; alpha-methoxyidazoxan; 2-(3-methoxy-2H-1,4-benzodioxin-3-yl)-4,5-dihydro-1H-imidazole; RX821002
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.2689 mL 21.3447 mL 42.6894 mL
5 mM 0.8538 mL 4.2689 mL 8.5379 mL
10 mM 0.4269 mL 2.1345 mL 4.2689 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us