yingweiwo

Riboflavin (vitamin B2)

Alias: E101; E-101; E 101; Vitamin G; Lactoflavin;
Cat No.:V5010 Purity: ≥98%
Riboflavin(also named as vitamin B2), a vitamin B class of compound, is a important nutrient that plays a key role in maintaining health in humans and other animals.
Riboflavin (vitamin B2)
Riboflavin (vitamin B2) Chemical Structure CAS No.: 83-88-5
Product category: Endogenous Metabolite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5g
10g
25g
Other Sizes

Other Forms of Riboflavin (vitamin B2):

  • Riboflavin Sodium Phosphate
  • Riboflavin-13C4,15N2 (Vitamin B2-13C3,15N1; Vitamin B2-13C4,15N2; E101-13C4,15N2)
  • Riboflavine phosphate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Riboflavin (also named as vitamin B2), a vitamin B class of compound, is a important nutrient that plays a key role in maintaining health in humans and other animals. It is the central component of the cofactors FAD and FMN and as such required for a variety of flavoprotein enzyme reactions including activation of other vitamins.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Riboflavin (vitamin B2) is the direct precursor of redox enzyme cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential for multiple cell physiology. The riboflavin biosynthetic pathway is regarded as a rich resource for therapeutic targets for broad spectrum antibiotics. Such demonstrates the promise of riboflavin biosynthesis and regulatory mechanisms as potential therapeutic targets for novel antibiotic drug discovery.[1]
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Vitamin B2 is readily absorbed from the upper gastrointestinal tract.
Riboflavin is readily absorbed from the upper GI tract; however, absorption of the drug involves active transport mechanisms and the extent of GI absorption is limited by the duration of contact of the drug with the specialized segment of mucosa where absorption occurs. Riboflavin 5-phosphate is rapidly and almost completely dephosphorylated in the GI lumen before absorption occurs. The extent of GI absorption of riboflavin is increased when the drug is administered with food and is decreased in patients with hepatitis, cirrhosis, biliary obstruction, or in those receiving probenecid.
Primary absorption of riboflavin occurs in the small intestine via a rapid, saturable transport system. A small amount is absorbed in the large intestine. The rate of absorption is proportional to intake, and it increases when riboflavin is ingested along with other foods and in the presence of bile salts. At low intake levels, most absorption of riboflavin occurs via an active or facilitated transport system. At higher levels of intake, riboflavin can be absorbed by passive diffusion.
In the plasma, a large portion of riboflavin associates with other proteins, mainly immunoglobulins, for transport. Pregnancy increases the level of carrier proteins available for riboflavin, which results in a higher rate of riboflavin uptake at the maternal surface of the placenta.
In the stomach, gastric acidification releases most of the coenzyme forms of riboflavin (flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN)) from the protein. The noncovalently bound coenzymes are then hydrolyzed to riboflavin by nonspecific pyrophosphatases and phosphatases in the upper gut. Primary absorption of riboflavin occurs in the proximal small intestine via a rapid, saturable transport system. The rate of absorption is proportional to intake, and it increases when riboflavin is ingested along with other foods and in the presence of bile salts. A small amount of riboflavin circulates via the enterohepatic system. At low intake levels most absorption of riboflavin is via an active or facilitated transport system.
For more Absorption, Distribution and Excretion (Complete) data for Riboflavin (16 total), please visit the HSDB record page.
Metabolism / Metabolites
Hepatic.
Free riboflavin is converted in the intestinal mucosa into flavin mononucleotide which is transformed into flavin adenine dinucleotide in the liver.
The metabolism of riboflavin is a tightly controlled process that depends on the riboflavin status of the individual. Riboflavin is converted to coenzymes within the cellular cytoplasm of most tissues but mainly in the small intestine, liver, heart, and kidney. The metabolism of riboflavin begins with the adenosine triphosphate (ATP)-dependent phosphorylation of the vitamin to flavin mononucleotide (FMN). Flavokinase, the catalyst for this conversion, is under hormonal control. FMN can then be complexed with specific apoenzymes to form a variety of flavoproteins; however, most is converted to flavin-adenine dinucleotide (FAD) by FAD synthetase. As a result, FAD is the predominant flavocoenzyme in body tissues. Production of FAD is controlled by product inhibition such that an excess of FAD inhibits its further production.
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. GTP is hydrolytically opened, converted into 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate leads to 6,7-dimethyl-8-ribityllumazine. The final step in the biosynthesis of the vitamin involves the dismutation of 6,7-dimethyl-8-ribityllumazine catalyzed by riboflavin synthase. The mechanistically unusual reaction involves the transfer of a four-carbon fragment between two identical substrate molecules. The second product, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, is recycled in the biosynthetic pathway by 6,7-dimethyl-8-ribityllumazine synthase. This article will review structures and reaction mechanisms of riboflavin synthases and related proteins up to 2007 and 122 references are cited.
Hepatic.
Half Life: 66-84 minutes
Biological Half-Life
66-84 minutes
The biologic half-life of riboflavin is about 66-84 minutes following oral or IM administration of a single large dose in healthy individuals.
Toxicity/Toxicokinetics
Toxicity Summary
Binds to riboflavin hydrogenase, riboflavin kinase, and riboflavin synthase. Riboflavin is the precursor of flavin mononucleotide (FMN, riboflavin monophosphate) and flavin adenine dinucleotide (FAD). The antioxidant activity of riboflavin is principally derived from its role as a precursor of FAD and the role of this cofactor in the production of the antioxidant reduced glutathione. Reduced glutathione is the cofactor of the selenium-containing glutathione peroxidases among other things. The glutathione peroxidases are major antioxidant enzymes. Reduced glutathione is generated by the FAD-containing enzyme glutathione reductase.
Protein Binding
60%
Interactions
Riboflavin interrelates with other B vitamins, notably niacin, which requires riboflavin for its formation from tryptophan, and vitamin B6, which also requires riboflavin for a conversion to a conenzyme form. These interrelationships are not known to affect the requirement for riboflavin.
The rate and extent of absorption of riboflavin are reportedly affected by propantheline bromide. Prior administration of propantheline bromide delayed the rate of absorption of riboflavin but increased the total amount absorbed, presumably by increasing the residence time of riboflavin at GI absorption sites.
Alcohol impairs intestinal absorption of riboflavin.
Concurrent use /with probenecid/ decreases gastrointestinal absorption of riboflavin; requirements for riboflavin may be increased in patients receiving probenecid.
For more Interactions (Complete) data for Riboflavin (7 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Rat oral > 10,000 mg/kg
LD50 Rat ip 560 mg/kg
LD50 Rat sc 5000 mg/kg
References
Chem Biol Drug Des, 2010. 75(4): p. 339-47.
Additional Infomation
Therapeutic Uses
Riboflavin is used to prevent riboflavin deficiency and to treat ariboflavinosis. Whenever possible, poor dietary habits should be corrected, and many clinicians recommend administration of multivitamin preparations containing riboflavin in patients with vitamin deficiencies since poor dietary habits often result in concurrent deficiencies.
Riboflavin may be useful in treating microcytic anemia that occurs in patients with a familial metabolic disease associated with splenomegaly and glutathione reductase deficiency.
Although riboflavin has not been shown by well-controlled trials to have any therapeutic value, the drug also has been used for the management of acne, congenital methemoglobinemia, muscle cramps, and burning feet syndrome.
People undergoing hemodialysis or peritioneal dialysis and those with severe malabsorption are likely to require extra riboflavin. Women who are carrying more than one fetus or breastfeeding more than one infant are also likely to require more riboflavin. It is possible that individuals who are ordinarily extremely physically active may also have increased needs for riboflavin.
For more Therapeutic Uses (Complete) data for Riboflavin (11 total), please visit the HSDB record page.
Drug Warnings
Riboflavin may cause urine to have a more yellow color than normal, especially if large doses are taken. This is to be expected and is no cause for alarm. Usually, however, riboflavin does not cause any side effects.
No short-term side effects /were observed/ in 49 patients treated with 400 mg/day of riboflavin taken with meals for at least 3 months. One patient receiving riboflavin and aspirin withdrew from the study because of gastric upset. This isolated finding may be an anomaly because no side effects were reported in other patients.
Maternal Medication usually Compatible with Breast-Feeding: Riboflavin: Reported Sign or Symptom in Infant or Effect on Lactation: None. /from Table 6/
Infants treated for hyperbilirubinemia may also be sensitive to excess riboflavin.
For more Drug Warnings (Complete) data for Riboflavin (6 total), please visit the HSDB record page.
Pharmacodynamics
Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolising of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin also helps in the prevention or treatment of many types of eye disorders, including some cases of cataracts.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H20N4O6
Molecular Weight
376.37
Exact Mass
376.138
CAS #
83-88-5
Related CAS #
Riboflavin phosphate sodium;130-40-5;Riboflavin-13C4,15N2;1217461-14-7;Riboflavin-5-Phosphate-13C4,15N2-1;Riboflavin-13C5;Riboflavin-d3;Riboflavine phosphate;146-17-8
PubChem CID
493570
Appearance
Light yellow to orange solid powder
Density
1.7±0.1 g/cm3
Boiling Point
715.6±70.0 °C at 760 mmHg
Melting Point
290 °C (dec.)(lit.)
Flash Point
386.6±35.7 °C
Vapour Pressure
0.0±2.4 mmHg at 25°C
Index of Refraction
1.733
LogP
-2.01
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
5
Heavy Atom Count
27
Complexity
680
Defined Atom Stereocenter Count
3
SMILES
CC1=CC2=C(C=C1C)N(C3=NC(=O)NC(=O)C3=N2)C[C@@H]([C@@H]([C@@H](CO)O)O)O
InChi Key
AUNGANRZJHBGPY-SCRDCRAPSA-N
InChi Code
InChI=1S/C17H20N4O6/c1-7-3-9-10(4-8(7)2)21(5-11(23)14(25)12(24)6-22)15-13(18-9)16(26)20-17(27)19-15/h3-4,11-12,14,22-25H,5-6H2,1-2H3,(H,20,26,27)/t11-,12+,14-/m0/s1
Chemical Name
7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]benzo[g]pteridine-2,4-dione
Synonyms
E101; E-101; E 101; Vitamin G; Lactoflavin;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~17.86 mg/mL (~47.45 mM)
H2O : ~14.29 mg/mL (~37.97 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6570 mL 13.2848 mL 26.5696 mL
5 mM 0.5314 mL 2.6570 mL 5.3139 mL
10 mM 0.2657 mL 1.3285 mL 2.6570 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us