Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
Other Sizes |
|
(R)-Mirtazapine is the R-enantiomer of Mirtazapine (Avanza; Zispin; Remeron), which is a 5-HT2/3 receptor inhibitor approved in 1990 as an atypical antidepressant for the treatment of depression.
Targets |
α2-adrenergic receptor ( pKi = 6.95 ); 5-HT3 Receptor ( pKi = 8.1 ); 5-HT2 Receptor ( pKi = 8.05 ); H1 Receptor ( pKi = 9.3 )
|
---|---|
ln Vivo |
The unique noradrenergic and specific serotonergic antidepressant mirtazapine acts antinociceptive. It is optically active and currently marketed as racemate. In an animal model of acute pain it has been shown that the enantiomers exhibit differential effects: the R(-)-enantiomer showed anti-, the S(+)-enantiomer pronociceptive properties while the racemate acted antinociceptive at low doses and profoundly pronociceptive after high-dose application. Aim of the present study was to evaluate potential enantioselective effects of mirtazapine in neuropathic pain. In a chronic constriction injury model of neuropathic pain, Wistar rats were injected (+/-)-mirtazapine and the enantiomers intrathecally. All substances were dosed between 0.001 and 1mg/kg and compared to vehicle in a randomized and blinded approach. Thermal hyperalgesia and mechanical allodynia were assessed. In contrast to the acute pain results, only racemic mirtazapine exerted significant sustained analgesic effects up to 48 h. Antinociception was observed at all dosages with a maximum in the range of 0.01 mg/kg. Surprisingly, neither enantiomer was pro- nor antinociceptive at any dose or time. Our findings suggest that the synergism of both enantiomers is required to evoke a significant analgesic effect for the treatment of neuropathic pain. Our study gained no evidence for the use of either R(-) nor S(+)-mirtazapine alone. Due to the unique characteristics of (+/-)-mirtazapine and its proven efficacy in acute pain our results suggest that racemic mirtazapine may be a particularly useful antidepressant in the adjunctive treatment of chronic neuropathic pain states and could provide additional benefit to current therapeutic options[1].
|
Additional Infomation |
LSM-5894 is an organic heterobicyclic compound and an organonitrogen heterocyclic compound.
See also: Mirtazapine (annotation moved to). |
Molecular Formula |
C₁₇H₁₆D₃N₃
|
---|---|
Molecular Weight |
265.35
|
Exact Mass |
265.157
|
CAS # |
61364-37-2
|
Related CAS # |
Mirtazapine;85650-52-8;(S)-Mirtazapine;61337-87-9;(S)-Mirtazapine-d3;Mirtazapine-d3;1216678-68-0;(R)-Mirtazapine-d3
|
PubChem CID |
3085219
|
Appearance |
White to off-white solid powder
|
Density |
1.2±0.1 g/cm3
|
Boiling Point |
432.4±45.0 °C at 760 mmHg
|
Flash Point |
215.3±28.7 °C
|
Vapour Pressure |
0.0±1.0 mmHg at 25°C
|
Index of Refraction |
1.668
|
LogP |
2.75
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
20
|
Complexity |
345
|
Defined Atom Stereocenter Count |
1
|
SMILES |
N12C3C(=CC=CN=3)CC3C=CC=CC=3[C@@H]1CN(C)CC2
|
InChi Key |
RONZAEMNMFQXRA-INIZCTEOSA-N
|
InChi Code |
InChI=1S/C17H19N3/c1-19-9-10-20-16(12-19)15-7-3-2-5-13(15)11-14-6-4-8-18-17(14)20/h2-8,16H,9-12H2,1H3/t16-/m0/s1
|
Chemical Name |
(7R)-5-methyl-2,5,19-triazatetracyclo[13.4.0.02,7.08,13]nonadeca-1(15),8,10,12,16,18-hexaene
|
Synonyms |
(R)-Mirtazapine; 61364-37-2; R-Mirtazapine; (-)-Mirtazapine; R-(-)-Mirtazapine; Org 44-19; 0UF1VD57JD; (R)-1,2,3,4,10,14b-Hexahydro-2-methylpyrazino(2,1-a)pyrido(2,3-c)(2)benzazepine;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7686 mL | 18.8430 mL | 37.6861 mL | |
5 mM | 0.7537 mL | 3.7686 mL | 7.5372 mL | |
10 mM | 0.3769 mL | 1.8843 mL | 3.7686 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.