PSI-6206 13CD3

Alias: RO-2433 13CD3; GS-331007 13CD3; Sofosbuvir metabolite GS-331007 13CD3;RO2433 13CD3; GS331007 13CD3; Sofosbuvir metabolite GS331007 13CD3
Cat No.:V3614 Purity: ≥98%
PSI-6206 13CD3 (RO-2433 13CD3; GS-331007 13CD3; Sofosbuvir metabolite GS-331007 13CD3) is the deuterium labeled form of PSI-6206.
PSI-6206 13CD3 Chemical Structure CAS No.: 1256490-42-2
Product category: HCV
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
Other Sizes

Other Forms of PSI-6206 13CD3:

  • PSI-6206
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

PSI-6206 13CD3 (RO-2433 13CD3; GS-331007 13CD3; Sofosbuvir metabolite GS-331007 13CD3) is the deuterium labeled form of PSI-6206. PSI-6206 is the deaminated derivative of PSI-6130, which is a potent and selective inhibitor of HCV NS5B polymerase. PSI-6206 inhibits HCV replicon with EC90 of >100 μM. Sofosbuvir (also known as PSI-7977, GS-7977; trade names Sovaldi and Virunon) is a HCV NS5B polymerase inhibitor that is used for the treatment of chronic hepatitis C virus (HCV) infection. Sofosbuvir acts by inhibiting the RNA polymerase that the hepatitis C virus uses to replicate its RNA. It is a component of the first all-oral, interferon-free regimen approved for treating chronic Hepatitis C. In 2013, the FDA approved sofosbuvir in combination with ribavirin (RBV) for oral dual therapy of HCV genotypes 2 and 3, and for triple therapy with injected pegylated interferon (pegIFN) and RBV for treatment-naive patients with HCV genotypes 1 and 4.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
As HCV NS5B polymerase inhibitor, PSI-7977 displays more potent inhibitory activity against HCV RNA replication than PSI-7976 with EC50 of 92 nM versus 1.07 μM and EC90 of 0.29 μM versus 2.99 μM, consistent with that incubating clone A cells with PSI-7977 leads to a higher concentration of PSI-7409 than clone A cells incubated with PSI-7976. PSI-7977 is an effective substrate for CatA to form PSI-352707 with 18-30 fold more potency as compared with PSI-7976. Unlike GS-7976, however, the CES1-mediated hydrolysis of PSI-7977 does not progress in a time-dependent manner. The S282T NS5B polymerase mutation but not S96T mutation confers resistance to PSI-7977 with EC90 increases from 0.42 μM to 7.8 μM. When assessed in an 8-day cytotoxicity assay, PSI-7977 displays no cytotoxicity against Huh7, HepG2, BxPC3, and CEM cells even at concentrations up to 100 μM. PSI-7977 treatment for 14 days shows a IC90 of 72.1 μM and 68.6 μM for the inhibition of mtDNA and rDNA, respectively, in HepG2 cells. PSI-7977 exhibits potent activity against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Sequence analysis of the JFH-1 NS5B region indicates that additional amino acid changes including T179A, M289L, I293L, M434T, and H479P are selected both prior to and after the emergence of S282T, which are required to confer resistance to PSI-7977.
ln Vivo
The average plasma ALT levels in mice with humanized livers in the 440- and 44-mg/kg/d treatment groups were below the upper limit of normal, and were not significantly different from those measured in vehicle-treated mice with humanized livers. The plasma lactate levels were also not elevated in or control mice or mice with humanized livers receiving either dose of PSI-7977.
Cell Assay
Cells (Huh7, HepG2, BxPC3, and CEM) are exposed to various concentrations of PSI-7977 for 8 days. At the end of the growth period, MTS dye from the CellTiter 96 AQueous One Solution Cell Proliferation Assay kit is added to each well, and the plate is incubated for an additional 2 hours. The absorbance at 490 nm is read with a Victor3 plate reader using themedium only controlwells as blanks. The 50% inhibition value (IC50) is determined by comparing the absorbance in wells containing cells and PSI-7977 to untreated cell control wells.
Animal Protocol
Oral administration, 44 or 440 mg/kg
TK-NOG mice with non-humanized (control) or humanized livers
References

[1]. J Biol Chem.2010 Nov 5;285(45):34337-47.

[2]. J Med Chem.2010 Oct 14;53(19):7202-18.

[3]. Antimicrob Agents Chemother.2012 Jun;56(6):3359-68.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C913CH10D3FN2O5
Molecular Weight
264.23
CAS #
1256490-42-2
Related CAS #
PSI-6206;863329-66-2
SMILES
OC[C@@H]1[ C@H]([C@@]([13C]([2H])([2H])[2H])(F)[ C@H](N2C(NC(C=C2)=O)=O)O1)O
Synonyms
RO-2433 13CD3; GS-331007 13CD3; Sofosbuvir metabolite GS-331007 13CD3;RO2433 13CD3; GS331007 13CD3; Sofosbuvir metabolite GS331007 13CD3
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:N/A
Water:N/A
Ethanol:N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7846 mL 18.9229 mL 37.8458 mL
5 mM 0.7569 mL 3.7846 mL 7.5692 mL
10 mM 0.3785 mL 1.8923 mL 3.7846 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Metabolism of PSI-7851 in clone A and primary human hepatocytes. [1].J Biol Chem.2010 Nov 5;285(45):34337-47.
  • Expression of CES1 and CatA in HHPC and clone A cells.[1].J Biol Chem.2010 Nov 5;285(45):34337-47.
  • Effect of telaprevir and BNPP on formation of PSI-7409.[1].J Biol Chem.2010 Nov 5;285(45):34337-47.
  • Stereospecificity. Stereoselectivity was studied by enzyme assays (A and B) and cellular metabolism assays (C and D). [1].J Biol Chem.2010 Nov 5;285(45):34337-47.
  • Enzyme activity and gene and protein expression of Hint1. [1].J Biol Chem.2010 Nov 5;285(45):34337-47.
  • siRNA gene silencing. A, quantification of CatA or Hint1 mRNA expression in extracts of Huh7 cells treated with CatA siRNA, Hint1 siRNA, or only delivery media (DM). [1].J Biol Chem.2010 Nov 5;285(45):34337-47.
Contact Us Back to top