yingweiwo

Anatoxin-a (ATX-a)

Cat No.:V85711 Purity: ≥98%
Anatoxin-a (ATX-a)
Anatoxin-a (ATX-a) Chemical Structure CAS No.: 64285-06-9
Product category: ChE
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Anatoxin-a (ATX-a) is a neurotoxic alkaloid that acts as both a nicotinic acetylcholine receptor (nAChR) agonist and an acetylcholinesterase (AChE) inhibitor.
Biological Activity I Assay Protocols (From Reference)
Targets
AChE
ADME/Pharmacokinetics
Metabolism / Metabolites
Anatoxin-a and homoanatoxin-a are potent neurotoxins produced by cyanobacteria such as Oscillatoria PCC 6506. Sequencing of the genome of this strain is underway, and ... a 29 kb DNA fragment containing a sequence called ks2 t... previously shown to be specific to Oscillatoria cyanobacteria producing anatoxin-a and homoanatoxin-a /was identified/. Bioinformatic analysis of this 29 kb fragment revealed a cluster of genes, which were annotated. The function assigned to the products of eight contiguous genes, from anaA to anaH, provides a clue to the biosynthesis of anatoxin-a and homoanatoxin-a. Proline is first loaded on an acyl carrier protein and its five-membered cycle oxidized to the pyrroline oxidation state. This activated ring is then successively loaded on three polyketide synthase modules for elongation, reduction, cyclization, and methylation. The final step is the hydrolysis of the thioester with subsequent decarboxylation. GC-MS and NMR analyses of homoanatoxin-a produced by PCC 6506 using labeled precursors confirm that proline is very likely the starter of these polyketide synthases. ... Specific PCR amplifications ... showed that the anaC, anaE, anaF, and anaG genes are always present in the genome of cyanobacteria producing anatoxin-a and homoanatoxin-a and absent in nonproducing strains. Histidine-tagged AnaC was purified to homogeneity and showed to catalyze the loading of proline on purified histidine-tagged AnaD that had been previously transformed into its holo form using the Bacillus subtilis Sfp phosphopantetheinyl transferase. All of these data provide strong evidence that ... the gene cluster responsible for the production of anatoxin-a and homoanatoxin-a in Oscillatoria PCC 6506 /has been identified/.
References

[1].An exploration of the binding prediction of anatoxin-a and atropine to acetylcholinesterase enzyme using multi-level computer simulations. Phys Biol. 2023 Nov 23;21(1).

[2].Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environ Res. 2021 Feb;193:110590.

Additional Infomation
1-[(1r,6r)-9-Azabicyclo[4.2.1]non-2-En-2-Yl]ethanone has been reported in Oscillatoria, Microcystis aeruginosa, and other organisms with data available.
Mechanism of Action
Anatoxin-a is a nicotinic (cholinergic) agonist that binds to neuronal nicotinic acetylcholine receptors. It has been suggested that the activation of presynaptic nicotinic acetylcholine receptors by anatoxin-a results in an influx of Na+, producing sufficient local depolarization to open voltage sensitive Ca++ and Na+ channels. The latter may then amplify the response, activating further Ca++ channels. As a result of this depolarization there is a block of further electrical transmission, and at sufficiently high doses this can lead to paralysis, asphyxiation and death. Anatoxin-a is more potent than nicotine or acetylcholine in evoking type 1A or type 2 current responses in rat hippocampal neurones, and it is more potent than nicotine in its ability to evoke the secretion of endogenous catecholamines from bovine adrenal chromaffin cells through their neuronal-type nicotinic receptors. Similar to nicotine, anatoxin-a was more potent than noradrenaline in releasing dopamine from striatal nerve terminals from rat superfused hippocampal synaptosomes. In vivo studies in the rat showed that the toxin stimulates the sympathetic system through the release of catecholamines from nerve endings.
Anatoxin-a is a nicotinic (cholinergic) agonist that binds to neuronal nicotinic acetylcholine receptors. It has been suggested that the activation of presynaptic nicotinic acetylcholine receptors by anatoxin-a results in an influx of Na+, producing sufficient local depolarisation to open voltage sensitive Ca++ and Na+ channels. The latter may then amplify the response, activating further Ca++ channels. As a result of this depolarization there is a block of further electrical transmission, and at sufficiently high doses this can lead to paralysis, asphyxiation and death.
Anatoxin-a (AnTx) is a natural neurotoxin, which acts as a potent and stereoselective agonist at the nicotinic acetylcholine receptors. ... The aim of this study was to determine the neurochemical bases for AnTx-induced striatal DA release, using the brain microdialysis technique, in freely moving rats. Local application of AnTx (3.5 mM) through the microdialysis probe produced an increase in striatal DA levels (701 +/- 51% with respect to basal values). The effect of infusion of AnTx in Ca(2+)-free Ringer medium, in Na(+)-free Ringer medium and with TTX in the medium, was inhibited. Also, reserpine pre-treatment blocked the action of AnTx on striatal DA levels. To investigate the involvement of the DA transporter, the effects of AnTx were observed in the presence of nomifensine. The coadministration of AnTx and nomifensine evoked an additive effect on striatal DA levels. The latter results show that the DA release is not mediated by a decreased DA uptake. Taken as a whole, these results suggest that the effects of AnTx are predominantly mediated by an exocytotic mechanism, Ca(2+)-, Na(+)- and TTX-dependent, and not by a mechanism mediated by the DA transporter.
(+)-Anatoxin-a (ANTX) stimulated guinea pig ileum contraction with a potency similar to that of acetylcholine (ACh); the stimulation was blocked by tubocurarine, hexamethonium, or atropine. Although the contraction stimulated by ANTX was blocked by atropine, no specific inhibition of the binding of [3H]N-methylscopolamine to ileum membranes was observed in the presence of ANTX. Furthermore, ANTX failed to stimulate the secretion of alpha-amylase from pancreatic acinar cells, a process that is activated by cholinergic agonists at the muscarinic receptors. When the ileum itself was stimulated by ACh, the contraction was not blocked by either hexamethonium or tubocurarine. Preincubation of the ileum with hemicholinium caused a 50% reduction in the ability of ANTX to stimulate contraction. Based upon these data, it was inferred that ANTX binds to postganglionic synaptic nicotinic receptors in the ileum, thus releasing endogenous ACh, which in turn causes ileum contraction by interacting with the postsynaptic muscarinic receptors. It was also observed that thymopentin (TP-5), a pentapeptide corresponding to positions 32-36 of thymopoietin, blocked the stimulation of ileum contraction by ANTX.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H15NO
Molecular Weight
165.23
Exact Mass
165.115
CAS #
64285-06-9
PubChem CID
3034748
Appearance
Oil
Density
1.037 g/cm3
Boiling Point
291ºC at 760 mmHg
Flash Point
124.7ºC
Index of Refraction
1.503
LogP
1.745
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
1
Heavy Atom Count
12
Complexity
232
Defined Atom Stereocenter Count
2
SMILES
CC(=O)C1=CCC[C@@H]2CC[C@H]1N2
InChi Key
SGNXVBOIDPPRJJ-PSASIEDQSA-N
InChi Code
InChI=1S/C10H15NO/c1-7(12)9-4-2-3-8-5-6-10(9)11-8/h4,8,10-11H,2-3,5-6H2,1H3/t8-,10-/m1/s1
Chemical Name
1-[(1R,6R)-9-azabicyclo[4.2.1]non-2-en-2-yl]ethanone
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Typically soluble in DMSO (e.g. 10 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.0522 mL 30.2608 mL 60.5217 mL
5 mM 1.2104 mL 6.0522 mL 12.1043 mL
10 mM 0.6052 mL 3.0261 mL 6.0522 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us