yingweiwo

Deschloroclozapine dihydrochloride

Alias: Deschloroclozapine (dihydrochloride); DCZ; 1977-07-7 (free base);
Cat No.:V79994 Purity: ≥98%
Deschloroclozapine di-HCl is a metabolite of clozapine and a potent muscarinic DREADDs agonist.
Deschloroclozapine dihydrochloride
Deschloroclozapine dihydrochloride Chemical Structure Product category: mAChR
This product is for research use only, not for human use. We do not sell to patients.
Size Price
100mg
500mg
Other Sizes

Other Forms of Deschloroclozapine dihydrochloride:

  • Deschloroclozapine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Deschloroclozapine di-HCl is a metabolite of clozapine and a potent muscarinic DREADDs agonist. The binding Kis of Deschloroclozapine to DREADD receptor subtypes hM3Dq and hM4Di are 6.3 and 4.2 nM respectively. [11C]-Deschloroclozapine is a promising PET tracer for imaging of DREADD.
Biological Activity I Assay Protocols (From Reference)
Targets
mAChR3/4; impurity/metabolite of clozapine
ln Vitro
Designer Receptors Exclusively Activated by Designer Drugs (DREADD) is a method for chemical correlation of neural activity in remotely collective freely moving animals. DREADD is an apparently altered category of G-coupled receptors (GPCRs) that are themselves unresponsive to endogenous neurotransmitters but are receptive to other “non” exogenous chemicals [2].
ln Vivo
Rhesus monkeys (5 to 6 years old, weight 5.5-7.9 kg) exhibit impaired working memory performance when given Deschloroclozapine (0.3 mg/kg; surgical injection) [3]. In vivo, desclozapine (0.1 mg/kg; im) reversibly senses behavioral effects in monkeys and effectively activates DREADD receptors [3].
The most common chemogenetic neuromodulatory system, designer receptors exclusively activated by designer drugs (DREADDs), uses a non-endogenous actuator ligand to activate a modified muscarinic acetylcholine receptor that is insensitive to acetylcholine. It is crucial in studies using these systems to test the potential effects of DREADD actuators prior to any DREADD transduction, so that effects of DREADDs can be attributed to the chemogenetic system rather than the actuator drug, particularly in experiments using nonhuman primates. We investigated working memory performance after injections of three DREADD actuators, clozapine, olanzapine, and Deschloroclozapine, in four male rhesus monkeys tested in a spatial delayed response task before any DREADD transduction took place. Performance at 0.1 mg/kg clozapine and 0.1 mg/kg Deschloroclozapine did not differ from vehicle in any of the four subjects. 0.2 mg/kg clozapine impaired working memory function in three of the four monkeys. Two monkeys were impaired after 0.1 mg/kg olanzapine and two were impaired after 0.3 mg/kg Deschloroclozapine. We speculate that the unique neuropharmacology of prefrontal cortex function makes the primate prefrontal cortex especially vulnerable to off-target effects of DREADD actuator drugs with affinity for endogenous monoaminergic receptor systems. These findings underscore the importance of within-subject controls for DREADD actuator drugs in the specific tasks under study to confirm that effects following DREADD receptor transduction are not owing to the actuator drug itself. They also suggest that off-target effects of DREADD actuators may limit translational applications of chemogenetic neuromodulation.
Enzyme Assay
Radioligand binding assays [2]
Human embryonic kidney (HEK-293, ATCC) cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 2 mM L-glutamine, antibiotic/antimycotic (all supplements from Gibco) and 10% heat-inactivated fetal bovine serum and kept in an incubator at 37 °C and 5% CO2. Cells were routinely tested for myclopasma contamination. Cells were seeded on 60 cm2 dishes at 4 × 106 cells/dish 24 h before transfection. The cells were transfected with 5 μg/dish of AAV packaging plasmids encoding for hM3Dq, hM4Di or a control vector and harvested 48 h after transfection. The cells were suspended in Tris-HCl 50 mM pH 7.4 supplemented with protease inhibitor cocktail. HEK-293 cells were disrupted with a Polytron homogenizer. Homogenates were centrifuged at 48,000 g (50 min, 4 °C) and washed twice in the same conditions to isolate the membrane fraction. Protein was quantified by the bicinchoninic acid method. For competition experiments, membrane suspensions (50 μg of protein/mL) were incubated in 50 mM Tris-HCl (pH 7.4) containing 10 mM MgCl2, 2.5 nM of [3H]clozapine (3070 GBq/mmol (83 Ci/mmol)) and increasing concentrations of the competing drugs during 2 h at RT. Nonspecific binding was determined in the presence of 10 μM clozapine. In all cases, free and membrane-bound radioligand were separated by rapid filtration of 500 μL aliquots in a 96-well plate harvester and washed with 2 mL of ice-cold Tris-HCl buffer. Microscint-20 scintillation liquid (65 μL/well) was added to the filter plates. The plates were incubated overnight at RT and radioactivity counts were determined in a MicroBeta2 plate counter with an efficiency of 41%. One-site competition curves were fitted using Prism 7. Ki values were calculated using the Cheng–Prusoff equation.
Animal Protocol
Drugs were prepared fresh daily, at concentrations so that monkeys received 0.1 ml/kg for injection (e.g., for a 0.2 mg/kg dose of drug, drug solution was prepared at a concentration of 2.0 mg/ml). Solutions were filtered through a 0.22 µm syringe filter and pH was determined before injection. Acetic acid, sodium acetate, and sodium hydroxide (NaOH) were all obtained from Fisher Scientific. Concentrations used for glacial acetic acid, sodium acetate, and NaOH were 99.7% (v/v), 1 m, and 0.2 m, respectively. Clozapine was stored at room temperature. Clozapine was given at 0.1 or 0.2 mg/kg, intramuscularly. For 0.1 mg/kg, clozapine powder was first dissolved in acetic acid and sodium acetate then diluted with NaOH to a final concentration in 0.25/50/49.75 acetic acid/sodium acetate/NaOH (v/v/v). For 0.2 mg/kg, the same reagents were used but the final concentration was 0.5/50/49.5 acetic acid/sodium acetate/NaOH (v/v/v). Olanzapine was stored at room temperature and given at 0.05 or 0.1 mg/kg, intramuscularly. Olanzapine solutions were made using the same method as above for the 0.1 mg/kg clozapine dose. Deschloroclozapine was stored at 4 °C and was given at 0.1 mg/kg and 0.3 mg/kg, intramuscularly. Low dose of Deschloroclozapine was made using the same method as low-dose clozapine and high-dose Deschloroclozapine was made using the same method as the higher dose of clozapine. Vehicle injections consisted of 0.25/50/49.75 acetic acid, sodium acetate, and NaOH and were given at 0.1 ml/kg. Actuator injections were never administered more than twice in 1 week and never on adjacent test days to allow for a washout period, accounting for the half-life of clozapine (14.2 h on average) and olanzapine (33 h on average). There were vehicle or no-injection test days on other days of the test week. Actuators were not counterbalanced; we tested clozapine, olanzapine, and Deschloroclozapine in that order in each monkey. Within drug conditions, however, doses were shuffled in order across drug test days. We also interpolated additional clozapine test days during testing with the other two actuators. Throughout the study, we did not observe any order effects or obvious effects on behavior on the days following actuator injections. Clozapine and olanzapine were given in the home cage 10 min before the start of testing and Deschloroclozapine was given in the home cage 30 min before the start of testing. Clozapine and olanzapine both get into the brain fairly quickly and previous DREADD studies using these actuators have started behavior 10 min post injection. Deschloroclozapine shows a slightly slower timescale with higher plasma concentration ~15–30 min after intramuscular injection and CSF concentration continues to rise between 30 min to 90 min post injection. Accordingly, beginning the delayed response task 30 min post injection for Deschloroclozapine would allow sufficient time for the actuator to get into the brain.[3]
References

[1]. The metabolic formation of reactive intermediates from clozapine, a drug associated with agranulocytosis in man. J Pharmacol Exp Ther. 1995;275(3):1463-1475.

[2]. 18F-labeled radiotracers for in vivo imaging of DREADD with positron emission tomography. Eur J Med Chem. 2021;213:113047.

[3]. Effect of chemogenetic actuator drugs on prefrontal cortex-dependent working memory in nonhuman primates. Neuropsychopharmacology. 2020;45(11):1793-1798.

Additional Infomation
Clozapine, a dibenzodiazepine antipsychotic, is associated with a 0.8% incidence of agranulocytosis. This clinically restrictive toxicity has been attributed to its chemically reactive metabolites. The generation of such metabolites--assessed via covalent binding and formation of thioether adducts--was investigated using human, rat and mouse liver microsomes and human neutrophils and bone marrow cells. In every instance, one major glutathione adduct of clozapine--C-6 glutathionyl clozapine--was formed in the presence of added glutathione. Adduct formation by the neutrophils and myeloid cells was dependent on cell activation by phorbol myristate acetate. Small fractions of drug underwent covalent binding to microsomes (1-6.8%) and to protein coincubated with neutrophils (0.47%) and myeloid cells (0.21%). Clozapine did not deplete intracellular glutathione in activated neutrophils. Clozapine was also metabolized in vivo to glutathione conjugates in rats and mice, the conjugates eliminated in bile over a 3-hr period representing 38% and 33% of the dose, respectively. In addition to the principal clozapine adduct found in vitro, the C-8 glutathionyl derivative of Deschloroclozapine was excreted by both species. It is concluded that clozapine undergoes bioactivation in several tissues and considerable bioactivation in vivo. The reactive metabolites generated by neutrophils and myeloid cells may play an important role in the metabolic causation of clozapine-induced agranuiocytosis. [1]
Designer Receptors Exclusively Activated by Designer Drugs (DREADD) are a preclinical chemogenetic approach with clinical potential for various disorders. In vivo visualization of DREADDs has been achieved with positron emission tomography (PET) using 11C radiotracers. The objective of this study was to develop DREADD radiotracers labeled with 18F for a longer isotope half-life. A series of non-radioactive fluorinated analogs of clozapine with a wide range of in vitro binding affinities for the hM3Dq and hM4Di DREADD receptors has been synthesized for PET. Compound [18F]7b was radiolabeled via a modified 18F-deoxyfluorination protocol with a commercial ruthenium reagent. [18F]7b demonstrated encouraging PET imaging properties in a DREADD hM3Dq transgenic mouse model, whereas the radiotracer uptake in the wild type mouse brain was low. [18F]7b is a promising long-lived alternative to the DREADD radiotracers [11C]clozapine ([11C]CLZ) and [11C]Deschloroclozapine ([11C]DCZ).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H22CL2N4
Molecular Weight
365.30
Exact Mass
364.1221521
Related CAS #
Deschloroclozapine;1977-07-7
PubChem CID
166610795
Appearance
Light yellow to yellow solid powder
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
1
Heavy Atom Count
24
Complexity
413
Defined Atom Stereocenter Count
0
SMILES
CN1CCN(CC1)C2=NC3=CC=CC=C3NC4=CC=CC=C42.Cl.Cl
InChi Key
ZMDCCOPUWCVMFM-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H20N4.2ClH/c1-21-10-12-22(13-11-21)18-14-6-2-3-7-15(14)19-16-8-4-5-9-17(16)20-18;;/h2-9,19H,10-13H2,1H3;2*1H
Chemical Name
6-(4-methylpiperazin-1-yl)-11H-benzo[b][1,4]benzodiazepine;dihydrochloride
Synonyms
Deschloroclozapine (dihydrochloride); DCZ; 1977-07-7 (free base);
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7375 mL 13.6874 mL 27.3748 mL
5 mM 0.5475 mL 2.7375 mL 5.4750 mL
10 mM 0.2737 mL 1.3687 mL 2.7375 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us