yingweiwo

Iberiotoxin

Alias: Iberiotoxin; 129203-60-7; IbTX; Iberiatoxin; UNII-773HER9B6T; 773HER9B6T; GTPL4218; DTXSID801045948;
Cat No.:V73597 Purity: ≥98%
Iberiotoxin is a toxin extracted from the venom of Buthus tamulus.
Iberiotoxin
Iberiotoxin Chemical Structure CAS No.: 129203-60-7
Product category: Potassium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Iberiotoxin is a toxin extracted from the venom of Buthus tamulus. Iberiotoxin is a selective, high-conductivity Ca2+-activated K+ channel inhibitor (antagonist) with a Kd of approximately 1 nM. Iberiotoxin does not block other types of voltage-dependent ion channels.
Biological Activity I Assay Protocols (From Reference)
Targets
Kd: 1 nM (Ca2+-activated K+ channel)[1][3]
ln Vitro
Reversibly, iberiotoxin obstructs the Ca2+-activated K+ channel in the smooth muscle excised from the aortic valve of cows. Iberiotoxin has an IC50 value of roughly 250 pM and only acts at the channel's outer face. Iberiotoxin (Ki of 250 pM) partially inhibits the binding of 125I-charybdotoxin in the membrane vesicles of the bovine aortic sarcolemmal. Charybdotoxin binding is noncompetitively inhibited by iberiotoxin[1]. Treatment with iberiotoxin reduces the migration of rat mesenchymal stem cells (rMSCs) in the absence of platelet lysate (PL), indicating that BK channels control rMSC migration under normal circumstances. Iberiotoxin at 10 nM eliminates the migratory impact that PL causes in MSCs[2].
ln Vivo
Iberiotoxin (0.125 nmol/nl, 1.25 nmol/nl, and 12.5 nmol/nl) is pumped into the paraventricular hypothalamic nucleus (PVN) of male Wistar rats (6-7 weeks old) suffering from chronic heart failure (CHF) using osmotic minipumps. The right ventricular weight/body weight, lung weight/body weight ratio, left ventricular end-diastolic diameter, and left ventricular ejection fraction all increase and decrease following the perfusion of Iberiotoxin by microinjection of rAAV2-KCNMB4 shRNA virus[4].
Enzyme Assay
Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding[3].
Animal Protocol
Male Wistar rats (6-7 weeks old) were randomized to sham operated group and CHF group (coronary artery ligation) . Two weeks after operation, BKCa inhibitor Iberiotoxin (IBTX) was infused into PVN by osmotic minipumps, rats were divided into following groups: sham+aCSF, CHF+aCSF, sham+low dose IBTX (0.125 nmol/nl) , CHF+low dose IBTX, sham+moderate dose IBTX (1.25 nmol/nl) , CHF+moderate dose IBTX, sham+ high dose IBTX (12.5 nmol/nl) , and CHF+high dose IBTX (n=6 each) . Additional rats were grouped as follows: sham+vehicle, sham+KCNMB4 knockdown (by rAAV2-KCNMB4 shRNA virus injection in PVN) , CHF+vehicle, CHF+ KCNMB4 knockdown group (n=6 each) . The cardiac function was determined by echocardiography, left ventricular hemodynamics were measured invasively, renal sympathetic nerve activity (RSNA) was recorded at 6 weeks after coronary artery ligation or sham operation. The contents of norepinephrine (NE) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in plasma were determined by enzyme-linked immunosorbent assay. The protein and mRNA expression of KCNMB4 in PVN were measured by immunofluorescence staining, Western blot, and real-time PCR, mRNA expression of BKCa in PVN was detected by real-time PCR. Results: Compared with the sham operation group, the cardiac function of the heart failure group was significantly reduced (P<0.05) , and the plasma NE and the serum NT-proBNP were significantly elevated (P<0.05) . The protein and mRNA expression of KCNMB4 in PVN were obviously down-regulated in CHF rats (P<0.05) . After perfusion of IBTX or KCNMB4 knockdown by microinjection of rAAV2-KCNMB4 shRNA virus,right ventricular weight/body weight and lung weight/body weight ratio as well as left ventricular end-diastolic diameter were increased and left ventricular ejection fraction was decreased (all P<0.05) , the sympathetic driving indexes was increased in sham rats, changes of these parameters further aggravated in CHF rats (P<0.05) . KCNMB4 knockdown further downregulated protein expression in PVN of CHF rats. Conclusion: Downregulation and blunted function of BKCa in PVN may contribute to sympathoexcitation and deterioration of cardiac function in rats with chronic heart failure[4].
References

[1]. Purification and Characterization of a Unique, Potent, Peptidyl Probe for the High Conductance Calcium-Activated Potassium Channel From Venom of the Scorpion Buthus Tamulus. J Biol Chem. 1990 Jul 5;265(19):11083-90.

[2]. Activation of BK Channel Contributes to PL-Induced Mesenchymal Stem Cell Migration. Front Physiol. 2020 Mar 24;11:210.

[3]. Mode of Action of Iberiotoxin, a Potent Blocker of the Large Conductance Ca(2+)-activated K+ Channel. Biophys J. 1992 Aug;63(2):583-90.

[4]. Downregulation of Large Conductance Calcium-Activated Potassium Channels in Paraventricular Nucleus Contributes to Sympathoexcitation in Rats With Chronic Heart Failure. Zhonghua Xin Xue Guan Bing Za Zhi. 2018 Mar 24;46(3):178-186.

Additional Infomation
An inhibitor of the high conductance, Ca2(+)-activated K+ channel (PK,Ca) has been purified to homogeneity from venom of the scorpion Buthus tamulus by a combination of ion exchange and reversed-phase chromatography. This peptide, which has been named iberiotoxin (IbTX), is one of two minor components of the crude venom which blocks PK,Ca. IbTX consists of a single 4.3-kDa polypeptide chain, as determined by polyacrylamide gel electrophoresis, analysis of amino acid composition, and Edman degradation. Its complete amino acid sequence has been defined. IbTX displays 68% sequence homology with charybdotoxin (ChTX), another scorpion-derived peptidyl inhibitor of PK,Ca, and, like this latter toxin, its amino terminus contains a pyroglutamic acid residue. However, IbTX possesses 4 more acidic and 1 less basic amino acid residue than does ChTX, making this toxin much less positively charged than the other peptide. In single channel recordings, IbTX reversibly blocks PK,Ca in excised membrane patches from bovine aortic smooth muscle. It acts exclusively at the outer face of the channel and functions with an IC50 of about 250 pM. Block of channel activity appears distinct from that of ChTX since IbTX decreases both the probability of channel opening as well as the channel mean open time. IbTX is a selective inhibitor of PK,Ca; it does not block other types of voltage-dependent ion channels, especially other types of K+ channels that are sensitive to inhibition by ChTX. IbTX is a partial inhibitor of 125I-ChTX binding in bovine aortic sarcolemmal membrane vesicles (Ki = 250 pM). The maximal extent of inhibition that occurs is modulated by K+, decreasing as K+ concentration is raised, but K+ does not affect the absolute inhibitory potency of IbTX. A Scatchard analysis indicates that IbTX functions as a noncompetitive inhibitor of ChTX binding. Taken together, these data suggest that IbTX interacts at a distinct site on the channel and modulates ChTX binding by an allosteric mechanism. Therefore, IbTX defines a new class of peptidyl inhibitor of PK,Ca with unique properties that make it useful for investigating the characteristics of this channel in target tissues.[1]
Due to their capacity to proliferate, migrate, and differentiate, mesenchymal stem cells (MSCs) are considered to be good candidates for regenerative medicine applications. The mechanisms underlying proliferation and differentiation of MSCs have been studied. However, much less is known about the mechanisms regulating the migration of MSCs. Platelet lysate (PL), a supplement used to promote cell expansion, has been shown to promote MSCs migration; however, the underlying mechanism are unknown. Here, by using adipose-derived rat MSCs (rMSCs) and the scratch assay in the absence and presence of various BK channels modulators, we evaluated the role of BK channels in mediating the PL-stimulated migration of rMSCs. We found that 5% PL increased rMSCs migration, and this effect was blocked by the addition of the BK channel selective antagonist Iberiotoxin (IBTX). In the absence of PL, the BK channel agonist NS1619, stimulated rMSCs migration to similar level as 5% PL. Addition of both NS1619 and 5% PL resulted in an increase in rMSCs migration, that was higher than when either one was added individually. From whole-cell recordings, it was found that the addition of 5% PL increased the magnitude of BK current density. By using Western blot and flow cytometry, it was found that PL did not affect the expression of BK channels. Together, our results indicate that as shown in other cell types, activation of BK channels by themselves also promote rMSC migration, and show that activation of BK channels contribute to the observed PL-induced increase in migration of rMSC.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C179H274N50O55S7
Exact Mass
4228.825
CAS #
129203-60-7
Related CAS #
Iberiotoxin TFA
PubChem CID
16132435
Sequence
H-DL-Pyr-DL-Phe-DL-xiThr-DL-Asp-DL-Val-DL-Asp-DL-Cys(1)-DL-Ser-DL-Val-DL-Ser-DL-Lys-DL-Glu-DL-Cys(1)-DL-Trp-DL-Ser-DL-Val-DL-Cys(2)-DL-Lys-DL-Asp-DL-Leu-DL-Phe-Gly-DL-Val-DL-Asp-DL-Arg-Gly-DL-Lys-DL-Cys(2)-DL-Met-Gly-DL-Lys-DL-Lys-DL-Cys(3)-DL-Arg-DL-Cys(3)-DL-Tyr-DL-Gln-OH
SequenceShortening
XFXDVDCSVSKECWSVCKDLFGVDRGKCMGKKCRCYQ
Appearance
White to off-white solid powder
LogP
-22
Hydrogen Bond Donor Count
61
Hydrogen Bond Acceptor Count
69
Rotatable Bond Count
100
Heavy Atom Count
291
Complexity
9970
Defined Atom Stereocenter Count
0
InChi Key
VDNVVLOBNHIMQA-UHFFFAOYSA-N
InChi Code
InChI=1S/C179H274N50O55S7/c1-87(2)65-111-155(261)208-112(66-93-33-15-13-16-34-93)146(252)195-77-133(239)225-139(88(3)4)172(278)213-117(71-136(244)245)158(264)199-100(44-31-62-190-178(186)187)144(250)193-75-131(237)198-102(40-22-27-58-181)148(254)219-124(167(273)205-109(56-64-285-12)145(251)194-76-132(238)197-101(39-21-26-57-180)147(253)200-105(43-25-30-61-184)151(257)220-123-81-286-288-83-125(221-152(258)106(203-166(123)272)45-32-63-191-179(188)189)169(275)210-113(68-95-46-48-97(234)49-47-95)156(262)206-110(177(283)284)50-53-129(185)235)82-287-291-86-128(168(274)202-104(42-24-29-60-183)150(256)212-116(70-135(242)243)159(265)207-111)224-175(281)142(91(9)10)228-164(270)121(79-231)216-157(263)115(69-96-74-192-99-38-20-19-37-98(96)99)211-170(276)126-84-289-290-85-127(171(277)217-122(80-232)165(271)227-141(90(7)8)174(280)218-120(78-230)163(269)201-103(41-23-28-59-182)149(255)204-108(154(260)222-126)52-55-134(240)241)223-160(266)118(72-137(246)247)214-173(279)140(89(5)6)226-162(268)119(73-138(248)249)215-176(282)143(92(11)233)229-161(267)114(67-94-35-17-14-18-36-94)209-153(259)107-51-54-130(236)196-107/h13-20,33-38,46-49,74,87-92,100-128,139-143,192,230-234H,21-32,39-45,50-73,75-86,180-184H2,1-12H3,(H2,185,235)(H,193,250)(H,194,251)(H,195,252)(H,196,236)(H,197,238)(H,198,237)(H,199,264)(H,200,253)(H,201,269)(H,202,274)(H,203,272)(H,204,255)(H,205,273)(H,206,262)(H,207,265)(H,208,261)(H,209,259)(H,210,275)(H,211,276)(H,212,256)(H,213,278)(H,214,279)(H,215,282)(H,216,263)(H,217,277)(H,218,280)(H,219,254)(H,220,257)(H,221,258)(H,222,260)(H,223,266)(H,224,281)(H,225,239)(H,226,268)(H,227,271)(H,228,270)(H,229,267)(H,240,241)(H,242,243)(H,244,245)(H,246,247)(H,248,249)(H,283,284)(H4,186,187,190)(H4,188,189,191)
Chemical Name
5-amino-2-[[2-[[10-[[6-amino-2-[[6-amino-2-[[2-[[2-[[7,34-bis(4-aminobutyl)-37-[[2-[[2-[[2-[[10-(4-aminobutyl)-22-[[3-carboxy-2-[[2-[[3-carboxy-2-[[3-hydroxy-2-[[2-[(5-oxopyrrolidine-2-carbonyl)amino]-3-phenylpropanoyl]amino]butanoyl]amino]propanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-7-(2-carboxyethyl)-13,19-bis(hydroxymethyl)-6,9,12,15,18,21-hexaoxo-16-propan-2-yl-1,2-dithia-5,8,11,14,17,20-hexazacyclotricosane-4-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylbutanoyl]amino]-25-benzyl-13-(3-carbamimidamidopropyl)-16,31-bis(carboxymethyl)-28-(2-methylpropyl)-6,9,12,15,18,21,24,27,30,33,36-undecaoxo-19-propan-2-yl-1,2-dithia-5,8,11,14,17,20,23,26,29,32,35-undecazacyclooctatriacontane-4-carbonyl]amino]-4-methylsulfanylbutanoyl]amino]acetyl]amino]hexanoyl]amino]hexanoyl]amino]-7-(3-carbamimidamidopropyl)-6,9-dioxo-1,2-dithia-5,8-diazacycloundecane-4-carbonyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-oxopentanoic acid
Synonyms
Iberiotoxin; 129203-60-7; IbTX; Iberiatoxin; UNII-773HER9B6T; 773HER9B6T; GTPL4218; DTXSID801045948;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us