Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Major metabolite of Quetiapine
|
---|---|
ln Vivo |
For quetiapine sulfoxide, the estimated Cmax value is 77.3±32.4 ng/mL (mean±SD). For quetiapine sulfoxide, the calculated AUClast value is 1,286±458 ng·h/mL. The metabolic ratio for quetiapine sulfoxide drops over time, typically from 119% two hours after dosage to 30% seventy-two hours later[1].
|
References |
|
Additional Infomation |
Background and purpose: Quetiapine has a range of clinical activity distinct from other atypical antipsychotic drugs, demonstrating efficacy as monotherapy in bipolar depression, major depressive disorder and generalized anxiety disorder. The neuropharmacological mechanisms underlying this clinical profile are not completely understood; however, the major active metabolite, norquetiapine, has been shown to have a distinct in vitro pharmacological profile consistent with a broad therapeutic range and may contribute to the clinical profile of quetiapine.
Experimental approach: We evaluated quetiapine and norquetiapine, using in vitro binding and functional assays of targets known to be associated with antidepressant and anxiolytic drug actions and compared these activities with a representative range of established antipsychotics and antidepressants. To determine how the in vitro pharmacological properties translate into in vivo activity, we used preclinical animal models with translational relevance to established antidepressant-like and anxiolytic-like drug action.
Key results: Norquetiapine had equivalent activity to established antidepressants at the noradrenaline transporter (NET), while quetiapine was inactive. Norquetiapine was active in the mouse forced swimming and rat learned helplessness tests. In in vivo receptor occupancy studies, norquetiapine had significant occupancy at NET at behaviourally relevant doses. Both quetiapine and norquetiapine were agonists at 5-HT1A receptors, and the anxiolytic-like activity of norquetiapine in rat punished responding was blocked by the 5-HT1A antagonist, WAY100635.
Conclusions and implications: Quetiapine and norquetiapine have multiple in vitro pharmacological actions, and results from preclinical studies suggest that activity at NET and 5-HT1A receptors contributes to the antidepressant and anxiolytic effects in patients treated with quetiapine. [1]
Risperidone, paliperidone, quetiapine, olanzapine, and aripiprazole are antipsychotic drugs approved for treating various psychiatric disorders, including schizophrenia. The objective of this randomized, parallel-group, open-label study was to compare finger-stick-based capillary with corresponding venous whole-blood and plasma concentrations for these drugs after administration of a single dose to healthy volunteers. All whole-blood and plasma drug concentrations were measured with validated liquid chromatography-tandem mass spectrometry methods. Capillary and venous concentrations (both in plasma and whole blood) were in close agreement, although a time-dependent difference was observed, most obviously for olanzapine and paliperidone, with slightly higher capillary versus venous drug concentrations during the first hours after administering a single dose. The observed difference between capillary and venous plasma drug concentrations is expected not to be relevant in clinical practice, considering the wide window of therapeutic concentrations and the wide range of drug concentrations in the patient population for a given dose. Based on these results, finger-stick-based capillary drug concentrations have been shown to approximate venous drug concentrations.[2] |
CAS # |
2448341-72-6
|
---|---|
Related CAS # |
Quetiapine sulfoxide dihydrochloride;329218-11-3;Quetiapine sulfoxide;329216-63-9
|
Appearance |
Light yellow to yellow solid powder
|
Synonyms |
Quetiapine Sulfoxide HCl; 329216-63-9; Quetiapine S-Oxide; Ethanol, 2-[2-[4-(5-oxidodibenzo[b,f][1,4]thiazepin-11-yl)-1-piperazinyl]ethoxy]-; 2-[2-[4-(11-oxobenzo[b][1,4]benzothiazepin-6-yl)piperazin-1-yl]ethoxy]ethanol; Quetiapine metabolite Quetiapine sulfoxide; 1CW92313VM; 2-(2-(4-(5-Oxidodibenzo(b,f)(1,4)thiazepin-11-yl)piperazin-1-yl)ethoxy)ethanol;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.