yingweiwo

PAT-347

Alias: PAT-347; 1689554-51-5; 3-({6-Chloro-7-Fluoro-2-Methyl-1-[2-Oxo-2-(Spiro[cyclopropane-1,3'-Indol]-1'(2'h)-Yl)ethyl]-1h-Indol-3-Yl}sulfanyl)-2-Fluorobenzoic Acid; CHEMBL4117054; SCHEMBL16600569; YFALJJNRFPFPRE-UHFFFAOYSA-N;
Cat No.:V72093 Purity: ≥98%
PAT-347 is an Autotaxin (ATX) inhibitor.
PAT-347
PAT-347 Chemical Structure CAS No.: 1689554-51-5
Product category: Phosphodiesterase(PDE)
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
PAT-347 is an Autotaxin (ATX) inhibitor. ATX is a secreted enzyme that hydrolyzes lysophosphatidylcholine (LPC) and regulates lysophosphatidic acid (LPA) production in the blood.
Biological Activity I Assay Protocols (From Reference)
Targets
Autotaxin
ln Vitro
PAT-347 is a type III Autotaxin inhibitor that has inhibits autotaxin with IC50 in the nanomolar range.
Enzyme Assay
Biochemical Assay with FS-3 Substrate[2]
Starting from 20 μM highest concentration, 10 μL of a dilution series of compound, 1/5 dilution, was added to the wells. Glycosylated human ATX protein (see Supporting Information) was used at a final concentration of 0.4 or 0.64 μg/mL. The enzyme was diluted in 50 mM Tris-HCl (2-amino-2-(hydroxymethyl)-1,3-propanediol hydrochloride) pH 8.0, 250 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, and 0.1% fatty acid free BSA in a total volume of 20 μL. The enzyme mixture was added to compounds, and the resulting mixture was incubated for 30 min at room temperature under shaking. The reaction was started by the addition of 20 μL of 0.75 μM FS-3 diluted in the same buffer as described above. Fluorescence was read on an Envision apparatus after 30 min incubation at room temperature (excitation 485 nm, emission 520 nM).[2]
Biochemical Assay with LPC 16:0 Substrate[2]
Starting from 20 μM highest concentration, 5 μL of a dilution series of compound (1/5 dilution) was added to the wells. Glycosylated human ATX protein (see Supporting Information) was used at a final concentration of 1 or 3 μg/mL. The enzyme was diluted in 50 mM Tris-HCl pH 8.5, 500 mM NaCl, 5 mM KCl, 10 mM CaCl2, and 0.1% fatty acid free BSA in a total volume of 10 μL. The reaction was started by the addition of 10 μL of 150 μM LPC 16:0 diluted in the same buffer as described above, and the mixture was incubated at 37 °C for 30 min. The reaction was terminated and choline quantified by the addition of a 25 μL mixture containing 0.6 U/mL of choline oxidase, 0.6 U/mL of horseradish peroxidase (HRP), 1.8 mM TOOS (N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline, sodium salt dihydrate), 1.2 mM 4-aminoantipyrine, and 20 mM EGTA (ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, stop-developer solution) diluted in the buffer described above. Luminescence was read on an Envision apparatus after 30 min of incubation at room temperature (excitation 555 nm, excitation light = 70%).[2]
Rat Plasma Assay[2]
Rat plasma was thawed on ice and added into a plate containing a dose range of compound to be tested. After 2 h of incubation at 37 °C, plasma proteins from a 10 μL aliquot were precipitated with an excess of methanol containing LPA 17:0 as internal standard. After centrifugation, the corresponding supernatant was diluted and injected on a C18 column. Analytes were eluted out of the column under isocratic conditions. No calibration curve was prepared for LPA 18:2, and all quantifications were performed based on peak area ratios (LPA 18:2/LPA 17:0). For each concentration of compound, LPA data were expressed as percentage of reduction (% reduction) using the formula: 100 – [((LPA ratio)/(LPA ratio in control sample)) × 100]
References
[1]. Chen Y, et al. Design, synthesis and anti-fibrosis evaluation of imidazo [1, 2–a] pyridine derivatives as potent ATX inhibitors[J]. Bioorganic & Medicinal Chemistry, 2021, 46: 116362.
[2]. Joncour A, et al. Discovery, structure–activity relationship, and binding mode of an imidazo [1, 2-a] pyridine series of autotaxin inhibitors[J]. Journal of Medicinal Chemistry, 2017, 60(17): 7371-7392.
Additional Infomation
Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX–LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure–activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound 40. Compound 40 was also able to decrease the plasma LPA levels upon oral administration to rats.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H21CLF2N2O3S
Molecular Weight
538.992751836777
Exact Mass
538.09
Elemental Analysis
C, 62.40; H, 3.93; Cl, 6.58; F, 7.05; N, 5.20; O, 8.90; S, 5.95
CAS #
1689554-51-5
Related CAS #
2650082-35-0 (sodium); 1689554-51-5 (free acid)
PubChem CID
91936957
Appearance
Typically exists as solid at room temperature
LogP
6.3
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
5
Heavy Atom Count
37
Complexity
909
Defined Atom Stereocenter Count
0
InChi Key
YFALJJNRFPFPRE-UHFFFAOYSA-N
InChi Code
InChI=1S/C28H21ClF2N2O3S/c1-15-26(37-21-8-4-5-16(23(21)30)27(35)36)17-9-10-19(29)24(31)25(17)32(15)13-22(34)33-14-28(11-12-28)18-6-2-3-7-20(18)33/h2-10H,11-14H2,1H3,(H,35,36)
Chemical Name
3-[6-chloro-7-fluoro-2-methyl-1-(2-oxo-2-spiro[2H-indole-3,1'-cyclopropane]-1-ylethyl)indol-3-yl]sulfanyl-2-fluorobenzoic acid
Synonyms
PAT-347; 1689554-51-5; 3-({6-Chloro-7-Fluoro-2-Methyl-1-[2-Oxo-2-(Spiro[cyclopropane-1,3'-Indol]-1'(2'h)-Yl)ethyl]-1h-Indol-3-Yl}sulfanyl)-2-Fluorobenzoic Acid; CHEMBL4117054; SCHEMBL16600569; YFALJJNRFPFPRE-UHFFFAOYSA-N;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8553 mL 9.2766 mL 18.5532 mL
5 mM 0.3711 mL 1.8553 mL 3.7106 mL
10 mM 0.1855 mL 0.9277 mL 1.8553 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us