yingweiwo

Rp-8-Br-cGMPS sodium salt (Rp-8-bromo-Cyclic GMPS sodium salt)

Alias: Rp-8-Br-Cgmps; 208445-06-1; Rp-8-bromo-Cyclic GMPS (sodium salt); Rp-8-Br-cGMPS sodium salt, >=98% (HPLC); J-008703; Guanosine,8-bromo-,cyclic 3',5'-[hydrogen(R)-phosphorothioate](9ci); Guanosine,8-bromo-,cyclic 3',5'-[hydrogen(S)-phosphorothioate](9ci); Guanosine, 8-bromo-, cyclic 3',5'-[(R)-(hydrogen phosphorothioate)], monosodium salt
Cat No.:V71506 Purity: ≥98%
Rp-8-Br-cGMPS (Rp-8-bromo-Cyclic GMPS) sodium salt is an effective Ca2+-ATPase activator.
Rp-8-Br-cGMPS sodium salt (Rp-8-bromo-Cyclic GMPS sodium salt)
Rp-8-Br-cGMPS sodium salt (Rp-8-bromo-Cyclic GMPS sodium salt) Chemical Structure CAS No.: 208445-06-1
Product category: Calcium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Rp-8-Br-cGMPS (Rp-8-bromo-Cyclic GMPS) sodium salt is an effective Ca2+-ATPase activator. Rp-8-Br-cGMPS sodium salt mediates cytosolic Ca2+ reduction through activation of Ca2+-ATPase and subsequent removal of Ca2+ from cells.
Biological Activity I Assay Protocols (From Reference)
Targets
Ca2+-ATPase
ln Vitro
The effects of 8-bromo-cGMP on intracellular calcium concentrations in cultured rat aortic smooth muscle cells were studied. Both angiotensin II and depolarizing concentrations of K+ stimulated Ca2+ accumulation in the cytoplasm. The increase in Ca2+ due to angiotensin II was associated with an increase in inositol phosphates, while that due to K+ was not. Preincubation of cells with 8-bromo-cGMP (100 microM) caused an inhibition of peak Ca2+ accumulation to either angiotensin II or K+. To probe the mechanism of action of cGMP in vascular smooth muscle, the effects of cGMP-dependent protein kinase on Ca2+-ATPase from the cultured cell particulate material were investigated. Ca2+-activated ATPase was stimulated approximately equal to 2-fold by exogenous calmodulin and up to 4-fold by low concentrations of purified cGMP-dependent protein kinase. The inclusion of both calmodulin and cGMP-dependent protein kinase resulted in an additive stimulation of Ca2+-ATPase. Stimulation of Ca2+-ATPase activity was observed at all Ca2+ concentrations tested (0.01-1.0 microM). cAMP-dependent protein kinase catalytic subunit and protein kinase C were either ineffective or less effective than cGMP-dependent protein kinase in stimulating the Ca2+-ATPase from rat aortic smooth muscle cells. These results suggest a possible mechanism of action for cGMP in mediating decreases in cytosolic Ca2+ through activation of a Ca2+-ATPase and the subsequent removal of Ca2+ from the cell.[1]
Enzyme Assay
Cyclic nucleotide-gated cation channels have been studied intensively in the primary sensory neurons of the visual and olfactory systems. Using both anatomical and physiological methods we have shown that they have a much more widespread distribution in the nervous system. In many retinal ganglion cells cGMP, but not cAMP, activates a non-selective conductance that has many of the properties of CNG channels. As many neurons also contain cGMP-dependent protein kinases (PKGs), we have used a variety of cGMP analogues to distinguish the actions of cGMP. Sp-8-Br-PET-cGMPS is a potent non-hydrolyzable cGMP analogue that is an agonist of PKG. We found that Sp-8-Br-PET-cGMPS acts as a competitive inhibitor of at least the rod CNG channel. Rp-8-Br-cGMPS has shown the opposite effects, namely as an agonist of the rod CNG channel and an inhibitor of PKG. In dissociated cell cultures and slices of rodent visual cortex cGMP had multiple rapid and reversible effects on transmission at glutamatergic synapses. Extracellular application of 8-Br-cGMP or Sp-8-Br-PET-cGMPS reduced stimulus evoked EPSPs in cortical slices. In cortical cultures both analogs reduced the frequency of spontaneous EPSCs, but not their amplitude. The effects on both EPSPs and EPSCs were presynaptic. The effects on evoked EPSPs may be due, in part, to reduced calcium influx through voltage-gated calcium channels. The effects on spontaneous EPSCs may be due, in part, to modulation of calcium fluxes through internal stores. Similar modulations of synaptic transmission have been found at gabaergic synapses. On postsynaptic cells, PKG activation produced a dramatic enhancement of the responses to applied NMDA. No effects were detected on applied AMPA/kainate or GABA. Together the results suggest that cGMP may use multiple mechanisms to modulate synaptic efficacy and that its actions may include regulating synaptic plasticity and the relative strength of excitatory and inhibitory drive through neural pathways.[2]
References

[1]. Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5685-9.

[2]. Modulation of synaptic function by cGMP and cGMP-gated cation channels. Neurochem Int. 2004 Nov;45(6):875-84.

Additional Infomation
(Sp)-8-Br-cGMPS is a nucleoside 3',5'-cyclic phosphorothioate having 8-bromoguanine as the nucleobase (the Sp-stereoisomer). It has a role as a protein kinase agonist. It is a nucleoside 3',5'-cyclic phosphorothioate, an organobromine compound and a member of purines. It is functionally related to a 3',5'-cyclic GMP.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H10BRN5NAO6PS
Molecular Weight
462.15
Exact Mass
460.917
CAS #
208445-06-1
PubChem CID
135511711
Appearance
Typically exists as solid at room temperature
LogP
-0.6
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
1
Heavy Atom Count
24
Complexity
655
Defined Atom Stereocenter Count
4
SMILES
[C@@H]1(N2C3N=C(N)NC(=O)C=3N=C2Br)O[C@@H]2CO[P@@](=O)([S-])O[C@H]2[C@H]1O.[Na+]
InChi Key
KRYIOQOBMVFLBO-CIZWMVDRSA-N
InChi Code
InChI=1S/C10H11BrN5O6PS/c11-9-13-3-6(14-10(12)15-7(3)18)16(9)8-4(17)5-2(21-8)1-20-23(19,24)22-5/h2,4-5,8,17H,1H2,(H,19,24)(H3,12,14,15,18)/t2-,4-,5-,8-,23?/m1/s1
Chemical Name
9-[(4aR,6R,7R,7aS)-2,7-dihydroxy-2-sulfanylidene-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-6-yl]-2-amino-8-bromo-1H-purin-6-one
Synonyms
Rp-8-Br-Cgmps; 208445-06-1; Rp-8-bromo-Cyclic GMPS (sodium salt); Rp-8-Br-cGMPS sodium salt, >=98% (HPLC); J-008703; Guanosine,8-bromo-,cyclic 3',5'-[hydrogen(R)-phosphorothioate](9ci); Guanosine,8-bromo-,cyclic 3',5'-[hydrogen(S)-phosphorothioate](9ci); Guanosine, 8-bromo-, cyclic 3',5'-[(R)-(hydrogen phosphorothioate)], monosodium salt
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1638 mL 10.8190 mL 21.6380 mL
5 mM 0.4328 mL 2.1638 mL 4.3276 mL
10 mM 0.2164 mL 1.0819 mL 2.1638 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us