yingweiwo

Guvacoline hydrobromide

Alias: Guvacoline Hydrobromide; 17210-51-4; Guvacoline (hydrobromide); Guvacoline, Hydrobromide; methyl 1,2,3,6-tetrahydropyridine-5-carboxylate;hydrobromide; Guvacoline (hydrobromide?); SCHEMBL8872254; DTXSID20574157;
Cat No.:V70554 Purity: ≥98%
Guvacoline HBr is a pyridine alkaloid found in Areca triandra and works as a full agonist at atrial and ileal muscarinic receptors (mAChR).
Guvacoline hydrobromide
Guvacoline hydrobromide Chemical Structure CAS No.: 17210-51-4
Product category: mAChR
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Guvacoline hydrobromide:

  • Norarecoline hydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Guvacoline HBr is a pyridine alkaloid found in Areca triandra and works as a full agonist at atrial and ileal muscarinic receptors (mAChR).
Biological Activity I Assay Protocols (From Reference)
Targets
AChR; natural pyridine alkaloid from Areca triandra
ln Vitro
A series of tertiary and quaternary N-substituted guvacine (1,2,5,6-tetrahydro-3-carboxy-pyridine) methyl and propargyl esters have been synthesized and tested for muscarinic/antimuscarinic activity on rat ileum and electrically paced left atria. Arecoline and arecaidine propargyl ester (APE) as well as their corresponding N-demethyl derivatives, Guvacoline (norarecoline) and guvacine propargyl ester, acted as full agonists at both atrial and ileal muscarinic receptors (range of pD2-values 6.09-8.07). However, in both preparations arecoline and APE were clearly more potent (up to 15-fold) than their N-demethyl analogues. Replacement of the N-methyl group in arecoline and APE by larger substituents (ethyl, n-propyl, n-butyl, benzyl, phenylethyl) as well as N-methylation resulted in a decrease or even a complete loss of agonistic activity. In both organs, the propargyl esters usually showed higher potency than the corresponding methyl ester analogues. N-Ethylguvacine propargyl ester and APE methiodide displayed pronounced agonistic activity in the atria (pD2 approximately 6.5; intrinsic activity = 0.79 and 0.67, respectively) but behaved as competitive antagonists in the ileum (pA2 = 6.06 and 5.62, respectively). Beside the lower sensitivity to muscarinic agonists of the rat ileum as compared to rat atria, the cardioselective stimulant action of both agents may also be due to their ability to recognize structural differences between atrial M2 alpha and ileal M2 beta muscarinic receptor subtypes [2].
ln Vivo
Areca nuts (seeds of Areca catechu L.) are a traditional and popular masticatory in India, Bangladesh, Malaysia, certain parts of China, and some other countries. Four related pyridine alkaloids (arecoline, arecaidine, Guvacoline, and guvacine) are considered being the main functional ingredients in areca nut. Until now, A. catechu is the only known species producing these alkaloids in the Arecaceae family. In the present study, we investigated alkaloid contents in 12 Arecaceae species and found that only Areca triandra Roxb. contained these pyridine alkaloids. We further analyzed in more detail tissue-specific and development-related distribution of these alkaloids in leaves, male and female flowers and fruits in different stages of maturity in A. triandra by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Results revealed that the alkaloids were most abundant in young leaves, the pericarp of ripe fruits and the endosperm of unripe fruits in developmental stage 2. Abundance of the 4 different alkaloids in A. triandra fruits varied during maturation. Pericarps of ripe fruits had the highest arecaidine concentration (4.45 mg g-1) and the lowest Guvacoline concentration (0.0175 mg g-1), whereas the endosperm of unripe fruits of developmental stage 2 contained the highest Guvacoline concentration (3.39 mg g-1) and the lowest guvacine concentration (0.245 mg g-1). We conclude that A. triandra is useful in future as a further valuable source of Areca alkaloids [1].
Enzyme Assay
Alkaloid extraction from A. triandra [1]
A modified method for the extraction of alkaloids in A. triandra tissue was used (Pan et al. 2018). Samples (100 mg dry weight) were lypophilized, homogenized in a ball mill and extracted with 1.2 mL of 50% methanol containing 0.1% formic acid. The homogenate was vortexed for 2 min, sonicated for 35 min and was kept at − 20 °C for 3–5 h. The mixture was vortexed again for 3 min at room temperature, centrifuged at 10 000g for 15 min at room temperature using a refrigerated centrifuge. The supernatant was transferred to a new vial and diluted 1000 times. Samples were stored at − 20 °C until analysis. 10 μL of the samples were analyzed by UPLC-MS. Alkaloid standards were dissolved in 95% acetonitrile containing 5 mM ammonium, giving stock solutions with concentrations of 1 μg μL−1. Stock solutions were stepwise diluted with 95% acetonitrile containing 5 mM ammonium formate, giving final concentrations of 1, 2, 4, 8 and 16 pg μL−1 for arecoline and arecaidine; 40, 80, 200, 400 and 800 pg μL−1 for Guvacoline; and 100, 200, 400, 800 and 1600 pg μL−1 for guvacine, respectively.
References

[1]. Tissue-specific and maturity-dependent distribution of pyridine alkaloids in Areca triandra. J Plant Res. 2019 Jul;132(4):531-540.

[2]. Synthesis and muscarinic activity of a series of tertiary and quaternary N-substituted guvacine esters structurally related to arecoline and arecaidine propargyl ester. Arzneimittelforschung. 1989 May;39(5):539-44.

Additional Infomation
We were also interested in the alkaloid concentration and distribution in other plant parts. In flowers, the highest alkaloid level can be found in female flowers (1.26 mg g−1) and the lowest alkaloid concentration was detected in male flowers (0.624 mg g−1) (Fig. 4c). Guvacoline was the major alkaloid in flowers. Spadices, female flowers and male flowers contained 0.697, 0.932 and 0.360 mg g−1 Guvacoline, respectively. Arecaidine (2.74 mg g−1) was the major alkaloid in tender leaves, while Guvacoline (0.612 mg g−1) was the major alkaloid in ripe leaves (Fig. 4d). Total alkaloid contents were 5.21 times higher in tender leaves than in ripe leaves. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C7H12BRNO2
Molecular Weight
222.08
Exact Mass
221.005
CAS #
17210-51-4
Related CAS #
Guvacoline hydrochloride;6197-39-3
PubChem CID
15560296
Appearance
Typically exists as solid at room temperature
LogP
1.366
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
2
Heavy Atom Count
11
Complexity
163
Defined Atom Stereocenter Count
0
SMILES
COC(=O)C1=CCCNC1.Br
InChi Key
DOXOETUWVNVADB-UHFFFAOYSA-N
InChi Code
InChI=1S/C7H11NO2.BrH/c1-10-7(9)6-3-2-4-8-5-6;/h3,8H,2,4-5H2,1H3;1H
Chemical Name
methyl 1,2,3,6-tetrahydropyridine-5-carboxylate;hydrobromide
Synonyms
Guvacoline Hydrobromide; 17210-51-4; Guvacoline (hydrobromide); Guvacoline, Hydrobromide; methyl 1,2,3,6-tetrahydropyridine-5-carboxylate;hydrobromide; Guvacoline (hydrobromide?); SCHEMBL8872254; DTXSID20574157;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.5029 mL 22.5144 mL 45.0288 mL
5 mM 0.9006 mL 4.5029 mL 9.0058 mL
10 mM 0.4503 mL 2.2514 mL 4.5029 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us