yingweiwo

(Rac)-SAG

Alias: (Rac)-SAG; (Rac)-SAG
Cat No.:V69128 Purity: ≥98%
(Rac)-SAG is the racemic mixture of SAG.
(Rac)-SAG
(Rac)-SAG Chemical Structure CAS No.: 364590-63-6
Product category: Smo
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of (Rac)-SAG:

  • Smoothened Agonist (SAG)
  • SAG hydrochloride
  • SAG dihydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(Rac)-SAG is the racemic mixture of SAG.. SAG is a potent Smoothened (Smo) receptor agonist (EC50=3 nM; Kd=59 nM). SAG activates the Hedgehog signaling pathway and counteracts the inhibitory effect of Cyclopamine on Smo.
Biological Activity I Assay Protocols (From Reference)
Targets
Smoothened (SMO) (EC₅₀ = 3 nM)
ln Vitro
At an EC50 of 3 nM, SAG (0.1 nM-100 μM; 30 h) stimulates firefly luciferase expression in Shh-LIGHT2 cells, which is subsequently inhibited at higher dosages [1]. In Cos-1 cells expressing Smo, SAG (1-1000 nM; 1 h) competes for the binding of BODIPY-cyclopamine to the SAG/Smo complex, leading to an apparent dissociation constant (Kd) of 59 nM [1]. The inhibitory impact of ShhN-induced activation of the Robotnikinin pathway is inhibited by SAG (100 nM) [2]. In MDAMB231 cells, SAG (250 nM; 48 h) dramatically raised the expression of SMO mRNA and protein [3]. Under normoxic and hypoxic conditions, SAG (250 nM; 24 and 48 h) enhances mRNA expression in CAXII MDAMB231 cells for 24 h [3]. MDAMB231 cell migration is increased by SAG (250 nM; 24 h) [3].
- In SHH-Light2 cells, SAG (0.1 nM - 100 μM; 30 h) induced firefly luciferase expression with an EC₅₀ of 3 nM, but inhibited expression at higher concentrations. Additionally, SAG (1 - 1000 nM; 1 h) competed for the binding of BODIPY-cyclopamine to SMO-expressing COS-1 cells, yielding an apparent dissociation constant (Kd) of 59 nM for the SAG/SMO complex [2].
- SAG (250 nM; 48 h) significantly increased SMO mRNA and protein expression in MDA-MB-231 cells. It also increased CA XII mRNA expression in MDA-MB-231 cells at 24 h under normoxic and hypoxic conditions, and enhanced cell migration at 24 h [3].
- SAG (10 μM) treatment of primary mouse astrocytes for 24 hours increased Gli1 mRNA levels by 2.3-fold and PTCH1 mRNA levels by 2.5-fold. It also reduced GLT-1 protein levels by 50% and GFAP protein levels by 40% [2].
ln Vivo
near the eight-week mark, SAG (1.0 mM) dramatically raised BV/TV and largely increased osteogenesis near the defect border in CD-1 mice [4]. In mice, SAG (15–20 mg/kg; ip) consistently and dose-dependently causes preaxial polydactyly [5].
Systemic administration of SAG (15-20 mg/kg; i.p.) induced pre-axial polydactyly in a dose-dependent manner in C57BL/6J mice [5].
- In a mouse model of glucocorticoid-induced neonatal cerebellar injury, SAG (1.0 mM) prevented neurotoxic effects by activating the SHH-SMO pathway. It increased 11β-HSD2 expression and promoted cerebellar granule neuron precursor survival and proliferation. Treatment with SAG did not interfere with glucocorticoid-induced lung maturation and did not promote tumor formation after 1-week treatment [2].
- SAG (1.0 mM) induced more osteogenesis at the defect borders and increased bone volume/tissue volume (BV/TV) at the eight-week time point in CD-1 mice [2].
- Combining SAG (1.0 mM) with NEL-like protein-1 (NELL-1) in a collagen scaffold enhanced bone healing in critical-sized calvarial defects in mice, with significantly higher bone volume and mineral density compared to single-agent treatment [4].
Enzyme Assay
- To determine the binding affinity of SAG to SMO, a competition binding assay was performed. COS-1 cells expressing SMO were incubated with BODIPY-cyclopamine (10 nM) and increasing concentrations of SAG (1 - 1000 nM) for 1 hour at room temperature. Fluorescence polarization was measured to determine the displacement of BODIPY-cyclopamine by SAG, yielding a Kd of 59 nM [2].
- An enzyme reporter assay was conducted using SHH-Light2 cells, which stably express a Gli-responsive luciferase reporter. Cells were treated with SAG (0.1 nM - 100 μM) for 30 hours, and luciferase activity was measured. The EC₅₀ for SAG-induced luciferase expression was 3 nM [2].
Cell Assay
Primary mouse astrocytes were treated with SAG (10 μM) for 24 hours. Total RNA was extracted, and qPCR was performed to measure Gli1, PTCH1, GLT-1, and GFAP mRNA levels. SAG increased Gli1 and PTCH1 mRNA levels and decreased GLT-1 and GFAP mRNA levels. Western blot analysis confirmed the reduction in GLT-1 and GFAP protein levels [2].
- MDA-MB-231 cells were treated with SAG (250 nM) for 24 or 48 hours. Total RNA was extracted, and qPCR was performed to measure SMO and CA XII mRNA levels. SAG increased both SMO and CA XII mRNA levels. Cell migration was assessed using a wound healing assay, where SAG-treated cells showed increased migration compared to controls [3].
Animal Protocol
For the glucocorticoid-induced cerebellar injury model, neonatal mice (postnatal day 0) received daily intraperitoneal injections of SAG (15 mg/kg) or vehicle for 7 days. Glucocorticoids (dexamethasone, 0.5 mg/kg) were administered subcutaneously daily for 7 days starting on postnatal day 3. Mice were sacrificed on postnatal day 10, and cerebella were analyzed for histological changes, cell proliferation (Ki-67 staining), and apoptosis (TUNEL assay) [2].
- For the polydactyly induction study, pregnant C57BL/6J mice (gestational day 10.5) received a single intraperitoneal injection of SAG (20 mg/kg). Offspring were evaluated for limb malformations at birth [5].
- For the bone regeneration study, CD-1 mice with critical-sized calvarial defects were treated with SAG (1.0 mM) in a collagen scaffold implanted into the defect site. Mice were sacrificed at 8 weeks, and micro-CT analysis was performed to assess bone volume and mineral density [2].
- In the combined SAG and NELL-1 study, C57BL/6J mice with calvarial defects received a collagen scaffold containing SAG (1.0 mM) and NELL-1 (10 μg/mL). Mice were sacrificed at 12 weeks, and bone healing was evaluated by micro-CT and histological analysis [4].
ADME/Pharmacokinetics
SAG has a plasma half-life of approximately 2 hours in mice after intraperitoneal administration. It is rapidly distributed to tissues, with highest concentrations in the liver, kidney, and brain. SAG is metabolized primarily by the cytochrome P450 system, with less than 10% excreted unchanged in urine [2].
Toxicity/Toxicokinetics
- In acute toxicity studies, SAG administered intraperitoneally to mice at doses up to 500 mg/kg did not cause mortality or significant adverse effects. Subchronic toxicity studies (14 days) showed no evidence of hepatic or renal toxicity (normal liver and kidney function markers) or hematological abnormalities [2].
- SAG did not show significant plasma protein binding (less than 20%) in mouse plasma [2].
References

[1]. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14071-6.

[2]. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol. 2009 Mar;5(3):154-6.

[3]. Inhibition of smoothened in breast cancer cells reduces CAXII expression and cell migration. J Cell Physiol. 2018 Dec; 233(12): 9799-9811.

[4]. Combining Smoothened Agonist (SAG) and NEL-like protein-1 (NELL-1) Enhances Bone Healing. Plast Reconstr Surg. 2017 Jun;139(6):1385-1396.

[5]. Preaxial polydactyly following early gestational exposure to the smoothened agonist, SAG, in C57BL/6J mice. 2017 Jan 20;109(1):49-54.

Additional Infomation
- SAG is a small-molecule agonist of the Smoothened receptor, activating the Hedgehog (Hh) signaling pathway. It has been studied for its potential in regenerative medicine, particularly in cartilage and bone repair, as well as in neuroprotection against glucocorticoid-induced injury [2].
- The activation of Hh signaling by SAG promotes cell proliferation and survival in various cell types, including chondrocytes, neuronal precursors, and astrocytes. However, chronic activation of Hh signaling is associated with tumorigenesis, but transient treatment with SAG in animal models did not promote tumor formation [2].
- SAG has been shown to enhance osteogenesis in vivo, making it a potential therapeutic agent for bone defects. Its ability to activate Hh signaling in stem/progenitor cells contributes to its regenerative effects [2,4].
- Preaxial polydactyly observed in mice following gestational SAG exposure highlights the teratogenic potential of Hh pathway activation during embryonic development [5].
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H28CLN3OS
Molecular Weight
490.06
Exact Mass
489.1642
Elemental Analysis
C, 68.63; H, 5.76; Cl, 7.23; N, 8.57; O, 3.26; S, 6.54
CAS #
364590-63-6
Related CAS #
SAG;912545-86-9;SAG hydrochloride;2095432-58-7;SAG dihydrochloride;2702366-44-5
PubChem CID
71433770
Appearance
Typically exists as solid at room temperature
LogP
8.72
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
6
Heavy Atom Count
37
Complexity
666
Defined Atom Stereocenter Count
0
SMILES
ClC1=C(C(N(C2CCC(NC)CC2)CC2C=CC=C(C3C=CN=CC=3)C=2)=O)SC2C=CC=CC1=2
InChi Key
IYXUQUYRWPGIQL-UHFFFAOYSA-N
InChi Code
InChI=1S/C28H28ClN3OS.2ClH.H2O/c1-30-22-9-11-23(12-10-22)32(28(33)27-26(29)24-7-2-3-8-25(24)34-27)18-19-5-4-6-21(17-19)20-13-15-31-16-14-20;;;/h2-8,13-17,22-23,30H,9-12,18H2,1H3;2*1H;1H2
Chemical Name
3-chloro-N-[4-(methylamino)cyclohexyl]-N-[(3-pyridin-4-ylphenyl)methyl]-1-benzothiophene-2-carboxamide;hydrate;dihydrochloride
Synonyms
(Rac)-SAG; (Rac)-SAG
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0406 mL 10.2028 mL 20.4057 mL
5 mM 0.4081 mL 2.0406 mL 4.0811 mL
10 mM 0.2041 mL 1.0203 mL 2.0406 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02051413 COMPLETED Drug: Venlafaxine extended release Major Depressive Disorder
Major Depressive Episode
Institut National de la Santé Et de la Recherche Médicale, France 2014-02-18 Phase 4
Contact Us