Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The toxicity of L-canavanine was investigated because of its demonstrated potential as an antitumor drug. This natural product was only slightly toxic to Sprague-Dawley rats following a single sc injection: the LD50 was 5.9 +/- 1 8 g/kg in adult rats and 5.0 +/- 1.0 g/kg in 10-day-old rats. Following a single dose of 2.0 g/kg, the systemic clearance value for canavanine in adult rats was 0.114 liter/hr, the volume of distribution at steady state was 0.154 liter, and the half-life was 1.56 hr. Forty-eight percent of the dose was excreted unaltered in the urine following an iv injection, and 16% of a sc dose was recovered in the urine. Bioavailability of a 2.0 g/kg sc dose was 72%. Single oral doses of canavanine were less toxic to adult rats than sc injections. Bioavailability of a 2.0 g/kg po dose was 43%, and only 1% of the administered canavanine was recovered in the urine. Twenty-one percent of the administered canavanine remained in the gastrointestinal tract 24 hr after an oral dose. Less than 1% of a 2.0 g/kg dose of L-[guanidinooxy-(14)C]canavanine was incorporated into the proteins of adult and neonatal rats 4 or 24 hr following administration. Repeated sc administration of canavanine resulted in more severe toxicity. Weight loss and alopecia were observed in rats given daily sc canavanine injections for 7 days. Food intake was decreased by 80% in adult rats subjected to this dosing regimen, but returned to normal after canavanine injections were terminated. Histological studies of tissues from adult rats treated with 3.0 g/kg canavanine daily for 6 days revealed pancreatic acinar cell atrophy and fibrosis. Serum amylase and lipase levels were elevated following one sc injection of 2.0 g/kg canavanine; after three daily injections both serum enzymes were depleted. Elevations in serum glucose and urea nitrogen, and depletion of cholesterol, were observed. The most significant changes were severe attenuations of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activity. Metabolism / Metabolites L-Canavanine (CAV) is an arginine (ARG) analog isolated from the jack bean, Canavalia ensiformis. CAV becomes incorporated into cellular proteins of MIA PaCa-2 human pancreatic cancer cells and the aberrant, canavanyl proteins are not preferentially degraded. Hydrolytic cleavage of CAV to canaline (CAN) and urea is mediated by arginase. CAN is a potent metabolite that inactivates vitamin B6-containing enzymes and may inhibit cell growth. To determine the presence of arginase and its specificity for ARG and CAV in MIA PaCa-2 cells, a radiometric assay, which quantifies the (14)C released from the hydrolytic cleavage of L-[guanidino-(14)C]ARG or L-[guanidinooxy-(14)C]CAV mediated by arginase, was employed. Insignificant amounts of (14)CO2 were released when cells were exposed to [(14)C]CAV or to [(14)C]ARG. Pancreatic cancer cells secrete a negligible amount of arginase. Cytotoxic effects of CAN and CAV were compared on cells exposed to varying concentrations of ARG. These studies provide evidence that CAV's cytotoxic effects on MIA PaCa-2 cells cannot be attributed to conversion to the active metabolite CAN. A slower and decreased hydrolysis of CAV by arginase allows CAV to persist and increases its chances of incorporating into proteins in these cells. Lack of considerable amounts of arginase in the pancreas makes CAV a worthy candidate for further studies in pancreatic cancer. L-Canavanine and its arginase-catalyzed metabolite, L-canaline, are two novel anticancer agents in development. Since the immunotoxic evaluation of agents in development is a critical component of the drug development process, the antiproliferative effects of L-canavanine and L-canaline were evaluated in vitro. Both L-canavanine and L-canaline were cytotoxic to peripheral blood mononucleocytes (PBMCs) in culture. Additionally, the mononucleocytes were concurrently exposed to either L-canavanine or L-canaline and each one of a series of compounds that may act as metabolic inhibitors of the action of L-canavanine and L-canaline (L-arginine, L-ornithine, D-arginine, L-lysine, L-homoarginine, putrescine, L-omega-nitro arginine methyl ester, and L-citrulline). The capacity of these compounds to overcome the cytotoxic effects of L-canavanine or L-canaline was assessed in order to provide insight into the biochemical mechanisms that may underlie the toxicity of these two novel anticancer agents. The results of these studies suggest that the mechanism of L-canavanine toxicity is mediated through L-arginine-utilizing mechanisms and that the L-canavanine metabolite, L-canaline, is toxic to human PBMCs by disrupting polyamine biosynthesis. The elucidation of the biochemical mechanisms associated with the effects of L-canavanine and L-canaline on lymphoproliferation may be useful for maximizing the therapeutic effectiveness and minimizing the toxicity of these novel anticancer agents. The metabolism of L-canavanine, a nonprotein amino acid with significant antitumor effects, was investigated. L-Canavanine, provided at 2.0 g/kg, was supplemented with 5 uCi of L-[guanidinooxy-(14)C]canavanine (58 uCi/mumol) and administered iv, sc, or orally to female Sprague-Dawley rats weighing approximately 200 g. 14C recovery in the urine at 24 hr was 83, 68, or 61%, respectively, of the administered dose. Another 5-8% of the (14)C was expired as (14)CO2. The gastrointestinal tract contained 21% of orally administered (14)C. Serum, feces, tissues, and de novo synthesized proteins only accounted for a few percent of the original dose by any administrative route. Analysis of the (14)C-containing urinary metabolites revealed that [(14)C] urea accounted for 88% of the urinary radioactivity for an iv injection, 75% for sc administration, and 50% following an oral dose. By all routes of administration, [(14)C]guanidine represented 5% of the radioactivity in the urine and [(14)C]guanidinoacetic acid accounted for 2%. Serum and urine amino acid analysis showed a markedly elevated ornithine level. Basic amino acids such as histidine, lysine, and arginine were also higher in the urine. Plasma ammonia levels were determined following oral canavanine doses of 1.0, 2.0, and 4.0 g/kg. A rapid but transient elevation in plasma ammonia was observed only at the 4.0 g/kg dose. This indicates that elevated plasma ammonia is not a likely cause of canavanine toxicity at the drug concentrations used in this study. It was observed previously that hydroxyguanidine is formed in the reaction of canavanine(2-amino-4-guanidinooxybutanoate) with amino acid oxidases. The present work shows that hydroxyguanidine is formed by a nonenzymatic beta,gamma-elimination reaction following enzymatic oxidation at the alpha-C and that the abstraction of the beta-H is general-base catalyzed. The elimination reaction requires the presence in the alpha-position of an anion-stabilizing group--the protonated imino group (iminium ion group) or the carbonyl group. The iminium ion group is more activating than the carbonyl group. Elimination is further facilitated by protonation of the guanidinooxy group. The other product formed in the elimination reaction was identified as vinylglyoxylate (2-oxo-3-butenoate), a very highly electrophilic substance. The product resulting from hydrolysis following oxidation was identified as alpha-keto-gamma-guanidinooxybutyrate (ketocanavanine). The ratio of hydroxyguanidine to ketocanavanine depended upon the concentration and degree of basicity of the basic catalyst and on pH. In the presence of semicarbazide, the elimination reaction was prevented because the imino group in the semicarbazone derivative of ketocanavanine is not significantly protonated. Incubation of canavanine with 5'-deoxypyridoxal also yielded hydroxyguanidine. Since the elimination reactions take place under mild conditions, they may occur in vivo following oxidation at the alpha-C of L-canavanine (ingested or formed endogenously) or of other amino acids with a good leaving group in the gamma-position (e.g., S-adenosylmethionine, methionine sulfoximine, homocyst(e)ine, or cysteine-homocysteine mixed disulfide) by an L-amino acid oxidase, a transaminase, or a dehydrogenase. Therefore, vinylglyoxylate may be a normal metabolite in mammals which at elevated concentrations may contribute to the in vivo toxicity of canavanine and of some of the other above-mentioned amino acids. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
IDENTIFICATION AND USE: L-canavanine is a solid. It is a potentially toxic antimetabolite of L-arginine that is stored by many leguminous plants. It has demonstrative antineoplastic activity against a number of animal-bearing carcinomas and cancer cell lines. L-canavanine has been used as an experimental medication. HUMAN EXPOSURE AND TOXICITY: L-Canavanine is a naturally occurring L-amino acid that interferes with L-arginine-utilizing enzymes owing to its structural analogy with this L-amino acid. In macrophages and polymorphonuclear leukocytes, which express inducible nitric oxide synthase (iNOS), L-canavanine is able to prevent the L-arginine-derived synthesis of nitric oxide (NO). L-canavanine exerts differential effects on human platelets in relation to the concentrations: at low levels, it exerts antiaggregating effects by actions independent of NOS inhibition, whereas, at high levels, it inhibits NO synthesis and does not exert antiaggregating effects. L-canavanine was cytotoxic to human peripheral blood mononuclear leucocytes (PBMCs) in culture. The results of these studies suggest that the mechanism of L-canavanine toxicity is mediated through L-arginine-utilizing mechanisms and that the L-canavanine metabolite, L-canaline, is toxic to human PBMCs by disrupting polyamine biosynthesis. ANIMAL STUDIES: It was only slightly toxic to rats following a single sc injection: the LD50 was 5.9 +/- 1 8 g/kg in adult rats and 5.0 +/- 1.0 g/kg in 10-day-old rats. Repeated sc administration of canavanine resulted in more severe toxicity. Weight loss and alopecia were observed in rats given daily sc canavanine injections for 7 days. Food intake was decreased by 80% in adult rats subjected to this dosing regimen, but returned to normal after canavanine injections were terminated. Histological studies of tissues from adult rats treated with 3.0 g/kg canavanine daily for 6 days revealed pancreatic acinar cell atrophy and fibrosis. Serum amylase and lipase levels were elevated following one sc injection of 2.0 g/kg canavanine; after three daily injections both serum enzymes were depleted. Elevations in serum glucose and urea nitrogen, and depletion of cholesterol, were observed. The most significant changes were severe attenuations of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activity. Eighteen female mice were fed a diet containing 1.56% canavanine sulphate (1% base) and eighteen others were fed a control diet from day 84 to day 477 of age. Four g/d/mouse diet were fed from day 84 to day 164 of age and 5 g/d/mouse were fed thereafter. Only 6 of 10 canavanine-fed mice with copulatory plugs (vs 5 of 5 controls) carried any pups to 17d of gestation. Counts of corpora lutea, embryos and resorption sites indicate that these significant effects on pregnancy may have been due to failure of implantation. Only 50% of control mice and a full 89% of canavanine-fed mice survived to 477 days of age. These results indicate that canavanine may extend the life of mice, but interferes with their reproduction. Mutagenic activities of l-canavanine and metabolite l-canaline on Salmonella typhimurium TA100 and Bacillus subtilis h 17 rec+ & M 45 rec- were investigated in order to elucidate the mechanism of cytotoxicity of each compound. Both compounds and their metabolites obtained from rat liver homogenate did not cause base-pair substitutions and frameshift activities on DNA structure. Apparently, the compounds do not act on DNA directly, but other mechanisms, such as formation of l-canavanine-containing proteins, appear to influence DNA metabolism. Canavanine induced marked growth inhibition of the rat colon carcinoma. Interactions The growth and development of final-stadium tobacco hornworm, manduca sexta (sphingidae) larvae fed a 2.5 mmole l-canavanine containing diet was markedly disrupted. Such canavanine-mediated disruption of larval growth was intensified greatly when these organisms were fed a canavanine-containing diet supplemented with a 1:10 molar ratio of l-arginine, l-citrulline, l-ornithine, or l-2,4-diaminobutyric acid; the larvae possess enhanced hemolymph volume (edema) and a significant mortality results from incomplete larval-pupal ecdysis. The modulatory effects of a non-selective endothelin receptor antagonist, bosentan, were investigated together with those of relatively selective inducible nitric oxide synthase inhibitors, aminoguanidine and L-canavanine, on mesenteric blood flow decrease, liver and spleen injury elicited by endotoxemia. Swiss albino mice (20-40 g) were administered intraperitoneally bosentan (3, 10 or 30 mg/kg), aminoguanidine (15 mg/kg) or L-canavanine (20 or 100 mg/kg) 10 min before they received saline or Escherichia coli endotoxin (10 mg/kg). After 4 hr, the mice were anesthetized, mesenteric blood flow values were measured, spleen and liver weight/body weight ratios were determined and the organs were examined histopathologically. Endotoxin decreased mesenteric blood flow (mL/min), saline: 3.0 +/- 0.2; endotoxin: 2.2 +/- 0.2: n=10, p<0.05), increased the weight of liver (g per kg body weight, saline: 47.5 +/- 2.0; endotoxin: 60.8 +/- 1.9: n=10, p<0.05) and spleen (g per kg body weight, saline: 3.9 +/- 0.5; endotoxin: 8.6 +/- 0.9; n=10, p<0.01) while it inflicted significant histopathological injury to both organs. Bosentan was ineffective at 3 mg/kg but at 10 and 30 mg/kg doses, it abolished all the deleterious effects of endotoxin without exception. Aminoguanidine blocked most of the effects of endotoxin except those on spleen. In contrast, L-canavanine blocked only the endotoxin-induced increase in liver weight but itself increased spleen weight and failed to block any other effects of endotoxin. Thus, it can be speculated that the beneficial effects of aminoguanidine are produced largely by mechanisms other than selective inducible nitric oxide synthase inhibition since L-canavanine was not fully effective. The beneficial effects of endothelin inhibition by using bosentan in endotoxemia can be further exploited for the understanding and the therapy of sepsis-related syndromes. The effects of L-canavanine, an inhibitor of nitric oxide synthase, on endotoxin-induced shock was investigated in the pentobarbitone anesthetized rat. Endotoxin infusion (2.5 mg kg-1 hr-1 over 6 hr) produced progressive and marked hypotension and hypoglycemia. Electron microscopy showed marked changes in the kidney, comprising severe endothelial cell disruption and the accumulation of platelets in the blood vessels. In the lung, there was marked accumulation of polymorphonuclear leukocytes in small blood vessels and endothelial disruption. Treatment with L-canavanine (10 mg kg-1 by bolus injection each hour starting 70 min after endotoxin or saline infusion) significantly reduced endotoxin-induced hypotension, without any effect on the hypoglycemia. This treatment markedly reduced the endotoxin-induced electron microscopical changes in the kidneys and lungs. Although L-canavanine, like L-NAME, inhibited both cerebellar constitute and splenic inducible nitric oxide synthase in vitro, in contrast to L-NAME it did not modify either arterial blood pressure or carotid artery blood flow in control rats. The data are consistent with L-canavanine being a selective inhibitor of inducible nitric oxide synthase, at least in vivo, and suggest that inhibitors of this enzyme may be beneficial in endotoxin-induced shock. The effects of L-canavanine and cadmium on the ribonucleoprotein constituents of HeLa S3 cells have been analyzed. Both chemicals induce a similar pattern of alterations in different RNP structures as well as in both RNA and protein synthesis. Pulse and chase autoradiographic experiments reveal that both canavanine and cadmium induce a preferential inhibition of nucleolar RNA synthesis and a slowdown in the transport or processing of nucleolar and extranucleolar RNA. Nucleoli become round and compact. Accumulation of perichromatin granules and fibrils occurs, there is a depletion of interchromatin fibrils, and nuclear formations appear which seem to be involved in the morphogenesis of perichromatin granules accumulated during the treatments. The appearance of clusters of 29- to 35-nm granules might be related with a deficient assembling of constituents of perichromatin granules. The effects of different inhibitors of the transcriptional processes on the accumulation of perichromatin granules suggest that these granules represent a particular subpopulation of hnRNP. On the basis of several physiological properties of L-canavanine, we have tested the prediction that this analogue of arginine would enhance the cytotoxic effects of gamma-rays in mammalian cells. Using the human colonic tumor cell line, HT-29, time-dose studies were performed with log-phase cultures in order to determine conditions which maximize the incorporation of L-canavanine into cellular proteins while leaving a large fraction of the cells viable for subsequent gamma-ray survival measurements. At an input ratio of 2.5 (L-canavanine:arginine), the analogue exerted a cytostatic effect on the cells for at least 6 days following one cell division. Little cell killing (less than 20%) by clonogenicity was caused by L-canavanine during the first 12 hr of treatment of log-phase cells, even at a L-canavanine:arginine ratio of 20. A 24-hr exposure, however, produced an exponential decrease in survival as a function of L-canavanine concentration. The interaction between L-canavanine treatment and gamma-ray damage with respect to cell survival was examined under several conditions and times based on the above findings. Optimal enhancement of X-ray-induced cytotoxicity (assayed by loss of clonogenicity) was observed with a 48-hr exposure to the analogue at a L-canavanine:arginine ratio of 10. A marked increase in radiosensitivity was observed when L-canavanine was administered either before or after irradiation of the cells. In both protocols, enhancement was seen at all radiation doses. Together with our earlier findings showing the antitumor activity of L-canavanine in L1210 murine leukemia, these results suggest the potential usefulness of this amino acid analogue in the treatment of cancer. Non-Human Toxicity Values LD50 Rat sc (10 day old) 5.0 +/- 1.0 g/kg LD50 Rat sc (adult) 5.9 +/- 1 8 g/kg |
Additional Infomation |
L-canavanine is a non-proteinogenic L-alpha-amino acid that is L-homoserine substituted at oxygen with a guanidino (carbamimidamido) group. Although structurally related to L-arginine, it is non-proteinogenic. It has a role as a phytogenic insecticide and a plant metabolite. It is functionally related to a L-homoserine. It is a conjugate base of a L-canavanine(1+). It is a tautomer of a L-canavanine zwitterion.
L-canavanine has been reported in Poissonia orbicularis, Sesbania herbacea, and other organisms with data available. Therapeutic Uses /EXPL THER/ L-Canavanine, a selective inhibitor of inducible nitric oxide (NO) synthase, has beneficial effects on the circulatory failure of rats with endotoxin shock. To investigate the direct relationship between these beneficial effects and the inhibition of the formation of NO in response to L-canavanine in endotoxin shock in the rat, we detected changes in venous nitrosyl-hemoglobin (NO-hemoglobin) levels using an electron spin resonance (ESR) assay. Anesthetized rats were injected with lipopolysaccharide (10 mg/kg iv). 1 hr after the lipopolysaccharide injection, the rats were divided into four groups: a lipopolysaccharide group receiving 0.3 mL of saline hourly, an L-canavanine 10 or an L-canavanine 20 group receiving L-canavanine 10 or 20 mg/kg iv hourly, respectively, and an L-NAME group receiving NG-nitro-L-arginine methyl ester (L-NAME) 15 mg/kg followed by 10 mg/kg iv hourly. A sham group received saline instead of lipopolysaccharide, and an L-canavanine group received L-canavanine 20 mg/kg iv hourly, 1 hr after the saline injection. At 5 hr after the lipopolysaccharide or saline injection, pressor responses to noradrenaline (1 ug/kg iv) were obtained. In the lipopolysaccharide group, lipopolysaccharide caused a progressive decrease in mean arterial pressure and an impairment of pressor responsiveness to noradrenaline. Administration of L-canavanine or L-NAME attenuated the endotoxin-induced hypotension and vascular hyporeactivity to noradrenaline. L-Canavanine did not alter mean arterial pressure and the pressor response to noradrenaline in the L-canavanine group. The endotoxin-induced increases in venous levels of NO-hemoglobin were significantly inhibited by L-canavanine or L-NAME. These data indicate that the beneficial hemodynamic effects of L-canavanine are associated with inhibition of the enhanced formation of NO by inducible NO synthase in a rat model of endotoxin shock. L-Canavanine is a potential agent in the treatment of endotoxin shock. /EXPL THER/ The cardiovascular failure in sepsis may result from increased nitric oxide biosynthesis, through the diffuse expression of an inducible nitric oxide synthase. In such conditions, nitric oxide synthase inhibitors might be of therapeutic value, but detrimental side effects have been reported with their use, possibly related to the blockade of constitutive nitric oxide synthase. Therefore, the use of selective inhibitors of inducible nitric oxide synthase might be more suitable. The aim of this study was to evaluate the effects of L-canavanine, a potentially selective inhibitor of inducible nitric oxide synthase, in an animal model of septic shock. Anesthetized rats were challenged with 10 mg/kg lipopolysaccharide intravenously. One hour later, they randomly received a 5 hr infusion of either L-canavanine (20 mg/hr/kg, n=15), nitro-L-arginine methyl ester (5 mg/hr/kg, n=13) or 0.9% NaCl (2 mL/hr/kg, n=21). Lipopolysaccharide induced a progressive fall in blood pressure and cardiac index, accompanied by a significant lactic acidosis and a marked rise in plasma nitrate. All these changes were significantly attenuated by L-canavanine, which also improved the tolerance of endotoxemic animals to acute episodes of hypovolemia. In addition, L-canavanine significantly increased survival of mice challenged with a lethal dose of lipopolysaccharide. In contrast to L-canavanine, nitro-L-arginine methyl ester increased blood pressure at the expense of a severe fall in cardiac index, while largely enhancing lactic acidosis. This agent did not improve survival of endotoxemic mice. In additional experiments, we found that the pressor effect of L-canavanine in advanced endotoxemia (4 hr) was reversed by L-arginine, confirming that it was related to nitric oxide synthase inhibition. In contrast, L-canavanine did not exert any influence on blood pressure in the very early stage (first hour) of endotoxemia or in the absence of lipopolysaccharide exposure, indicating a lack of constitutive nitric oxide synthase inhibition by this agent. In conclusion, L-canavanine produced beneficial hemodynamic and metabolic effects and improved survival in rodent endotoxic shock. The actions of L-canavanine were associated with a selective inhibition of inducible nitric oxide synthase and were in marked contrast to the deleterious consequences of nitro-L-arginine methyl ester, a non-selective nitric oxide synthase inhibitor, in similar conditions. /EXPL THER/ Administration of lipopolysaccharide to anesthetised rats produced a reduction in mean arterial pressure, an increase in heart rate, and death at 4-6 hr. Intravenous infusion of NG-nitro-L-arginine methyl ester (50 mg/kg), an inhibitor of constitutive and inducible nitric oxide (NO) synthase, 60 min after challenge with lipopolysaccharide, caused an immediate increase in blood pressure followed by a precipitous fall in pressure, and death. In contrast, intravenous infusion of L-canavanine (100 mg/kg), reported to be a selective inhibitor of inducible NO synthase in vitro, 60 min and 180 min after lipopolysaccharide challenge, produced an increase in mean arterial pressure and reversed the lipopolysaccharide induced hypotension. However, in lipopolysaccharide challenged animals protected from hypotension by administration of L-canavanine (60 min post challenge), intravenous infusion of NG-nitro-L-arginine methyl ester at 180 min post challenge caused an immediate rise in mean arterial pressure, followed by a rapid fall in blood pressure and heart rate, and sudden death. In contrast, a second dose of L-canavanine at 180 min post challenge maintained blood pressure for the duration of the experiment. These findings indicate that inhibition of both constitutive and inducible NO synthase during endotoxemia is lethal. However, the use of a selective inhibitor of inducible NO synthase restores mean arterial pressure to baseline, and offers a therapeutic approach to managing hypotension in shock. /EXPL THER/ There is a clear need for agents with novel mechanisms of action to provide new therapeutic approaches for the treatment of pancreatic cancer. Owing to its structural similarity to L-arginine, L-canavanine, the beta-oxa-analog of L-arginine, is a substrate for arginyl tRNA synthetase and is incorporated into nascent proteins in place of L-arginine. Although L-arginine and L-canavanine are structurally similar, the oxyguanidino group of L-canavanine is significantly less basic than the guanidino group of L-arginine. Consequently, L-canavanyl proteins lack the capacity to form crucial ionic interactions, resulting in altered protein structure and function, which leads to cellular death. Since L-canavanine is selectively sequestered by the pancreas, it may be especially useful as an adjuvant therapy in the treatment of pancreatic cancer. This novel mechanism of cytotoxicity forms the basis for the anticancer activity of L-canavanine and thus, arginyl tRNA synthetase may represent a novel target for the development of such therapeutic agents. For more Therapeutic Uses (Complete) data for (L)-CANAVANINE (8 total), please visit the HSDB record page. |
Molecular Formula |
C5H12N4O3
|
---|---|
Molecular Weight |
176.17
|
Exact Mass |
176.091
|
CAS # |
543-38-4
|
Related CAS # |
L-Canavanine sulfate;2219-31-0
|
PubChem CID |
439202
|
Appearance |
Crystals from absolute alcohol
|
Density |
1.61g/cm3
|
Boiling Point |
431.2ºC at 760mmHg
|
Melting Point |
184ºC
|
Flash Point |
214.6ºC
|
Index of Refraction |
1.602
|
LogP |
0.094
|
Hydrogen Bond Donor Count |
4
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
12
|
Complexity |
178
|
Defined Atom Stereocenter Count |
1
|
SMILES |
C(CONC(=N)N)[C@@H](C(=O)O)N
|
InChi Key |
FSBIGDSBMBYOPN-VKHMYHEASA-N
|
InChi Code |
InChI=1S/C5H12N4O3/c6-3(4(10)11)1-2-12-9-5(7)8/h3H,1-2,6H2,(H,10,11)(H4,7,8,9)/t3-/m0/s1
|
Chemical Name |
(2S)-2-amino-4-(diaminomethylideneamino)oxybutanoic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 5.6763 mL | 28.3817 mL | 56.7634 mL | |
5 mM | 1.1353 mL | 5.6763 mL | 11.3527 mL | |
10 mM | 0.5676 mL | 2.8382 mL | 5.6763 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.