Size | Price | Stock | Qty |
---|---|---|---|
10mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Topical corticosteroids can be absorbed from normal intact skin. Inflammation and/or other disease processes in the skin increase percutaneous absorption. Corticosteroids are metabolized primarily in the liver and are then excreted by the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile. Metabolism / Metabolites Primarily hepatic via CYP3A4 Biological Half-Life 6-8 hours |
---|---|
Toxicity/Toxicokinetics |
Protein Binding
95% |
References |
[1]. Bodor N, et al. Soft drugs 4. 3-Spirothiazolidines of hydrocortisone and its derivatives[J]. International Journal of Pharmaceutics, 1982, 10(4): 307-321.
|
Additional Infomation |
Cortisol 17-valerate is a glucocorticoid, a cortisol ester, a valerate ester and a primary alpha-hydroxy ketone.
Hydrocortisone Valerate is the valerate salt form of hydrocortisone, a synthetic glucocorticoid receptor agonist with antiinflammatory, antipruritic and vasoconstrictive effects. Binding and activation of the glucocorticoid receptor results in the activation of lipocortin that in turn inhibits cytosolic phospholipase A2. Lack of phospholipase A2 prevents the release of arachidonic acid, precursor for inflammatory mediator prostaglandins and leukotrienes, from the cell membrane. Secondly, mitogen-activated protein kinase (MAPK) phosphatase 1 is induced, thereby leads to dephosphorylation and inactivation of Jun N-terminal kinase directly inhibiting c-Jun mediated transcription. Finally, transcriptional activity of nuclear factor (NF)-kappa-B is blocked, thereby inhibits the transcription of cyclooxygenase 2, which is essential for prostaglandin production. Drug Indication For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). It is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease. Mechanism of Action Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Pharmacodynamics Hydrocortisone is the most important human glucocorticoid. It is essential for life and regulates or supports a variety of important cardiovascular, metabolic, immunologic and homeostatic functions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Glucocorticoids are a class of steroid hormones characterised by an ability to bind with the cortisol receptor and trigger a variety of important cardiovascular, metabolic, immunologic and homeostatic effects. Glucocorticoids are distinguished from mineralocorticoids and sex steroids by having different receptors, target cells, and effects. Technically, the term corticosteroid refers to both glucocorticoids and mineralocorticoids, but is often used as a synonym for glucocorticoid. Glucocorticoids suppress cell-mediated immunity. They act by inhibiting genes that code for the cytokines IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8 and TNF-alpha, the most important of which is the IL-2. Reduced cytokine production limits T cell proliferation. Glucocorticoids also suppress humoral immunity, causing B cells to express lower amounts of IL-2 and IL-2 receptors. This diminishes both B cell clonal expansion and antibody synthesis. The diminished amounts of IL-2 also leads to fewer T lymphocyte cells being activated. |
Molecular Formula |
C26H38O6
|
---|---|
Molecular Weight |
446.58
|
Exact Mass |
446.267
|
CAS # |
57524-89-7
|
Related CAS # |
Hydrocortisone acetate;50-03-3;Hydrocortisone;50-23-7;Hydrocortisone phosphate;3863-59-0
|
PubChem CID |
5282494
|
Appearance |
White to off-white solid powder
|
Density |
1.21g/cm3
|
Boiling Point |
595.1ºC at 760mmHg
|
Melting Point |
217-220 °C
|
Flash Point |
195ºC
|
Index of Refraction |
1.56
|
LogP |
3.522
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
32
|
Complexity |
832
|
Defined Atom Stereocenter Count |
7
|
SMILES |
CCCCC(O[C@]1(C(CO)=O)CC[C@H]2[C@@H]3CCC4=CC(CC[C@@]4([C@H]3[C@@H](O)C[C@@]21C)C)=O)=O.C/C=C\C(C(NC1=CC=CC=C1C)=O)=C
|
InChi Key |
FZCHYNWYXKICIO-FZNHGJLXSA-N
|
InChi Code |
InChI=1S/C26H38O6/c1-4-5-6-22(31)32-26(21(30)15-27)12-10-19-18-8-7-16-13-17(28)9-11-24(16,2)23(18)20(29)14-25(19,26)3/h13,18-20,23,27,29H,4-12,14-15H2,1-3H3/t18-,19-,20-,23+,24-,25-,26-/m0/s1
|
Chemical Name |
[(8S,9S,10R,11S,13S,14S,17R)-11-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl] pentanoate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2392 mL | 11.1962 mL | 22.3924 mL | |
5 mM | 0.4478 mL | 2.2392 mL | 4.4785 mL | |
10 mM | 0.2239 mL | 1.1196 mL | 2.2392 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.