yingweiwo

PF-3716556

Alias: PF-3716556; 928774-43-0; PF-03716,556; PF-3716,556; PF03716,556; PF 03716,556; PF 3716,556; (R)-N-(2-hydroxyethyl)-N,2-dimethyl-8-((5-methylchroman-4-yl)amino)imidazo[1,2-a]pyridine-6-carboxamide; 701L6668UD; PF 3716556; PF3716556; PF-03716556; PF 03716556; PF03716556
Cat No.:V1639 Purity: ≥98%
PF 3716556 (PF3716556; PF-3716556) is a novel, potent and selective P-CAB (potassium-competitive acid blocker: acid pump antagonist) with anti-acid reflux activity.
PF-3716556
PF-3716556 Chemical Structure CAS No.: 928774-43-0
Product category: Proton Pump
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

PF 3716556 (PF3716556; PF-3716556) is a novel, potent and selective P-CAB (potassium-competitive acid blocker: acid pump antagonist) with anti-acid reflux activity. It inhibits P-CAB with pIC50 of 6.026 and 7.095 for the inhibition of porcine H+,K+-ATPase activity in ion-leaky and ion-tight assay, respectively. PF-3716556 inhibits gastric acid secretion and thus has the potential for the treatment of gastroesophageal reflux disease. It displays no activity at Na+,K+-ATPase. PF-03716556 did not display any species differences, exhibiting highly selective profile including the canine kidney Na(+),K(+)-ATPase.

Biological Activity I Assay Protocols (From Reference)
Targets
H+/K+-ATPase or acid pump (pIC50 = ~6.0)
ln Vitro
PF 03716556, with a pIC50 of 7.095 at pH 7.4, inhibits H+, K+-ATPase activity in porcine ion tight membrane vesicles in a concentration-dependent manner[1]. The affinities for a range of receptors, ion channels, and enzymes were determined to analyze selectivity profile. Acid secretion in Ghosh-Schild rats and Heidenhain pouch dogs were measured by titrating perfusate and gastric juice samples. PF-03716556 demonstrated 3-fold greater inhibitory activity than 5,6-dimethyl-2-(4-fluorophenylamino)-4-(1-methyl-1,2,3,4-tetrahydroisoquinoline-2-yl)pyrimidine (revaprazan), the only acid pump antagonist that has been available on the market, in ion-tight assay. The compound did not display any species differences, exhibiting highly selective profile including the canine kidney Na(+),K(+)-ATPase. Kinetics experiments revealed that PF-03716556 has a competitive and reversible mode of action.
ln Vivo
Rats treated with PF 03716556 (1–10 mg/kg; intraduodenal; once; male Sprague-Dawley rats) exhibit dose-dependent inhibition of gastric acid output [1].More rapid onset of action than 5-methoxy-2-{[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]-sulfinyl}-benzimidazole (omeprazole) and 3-fold greater potency than revaprazan were observed in Ghosh-Schild rats and Heidenhain pouch dogs. PF-03716556, a novel acid pump antagonist, could improve upon or even replace current pharmacological treatment for gastroesophageal reflux disease.
Animal Protocol
Animal/Disease Models: Male SD (Sprague-Dawley) rats (250 -300 g) treated with Pentagastrin[1]
Doses: 1 mg/kg, 3 mg/kg, 10 mg/kg
Route of Administration: Intraduodenal administration; once
Experimental Results: Inhibited gastric acid secretion in a dose-dependent manner.
References

[1]. N-(2-hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide (PF-03716556), a novel, potent, and selective acid pump antagonist for the treatment of gastroesophageal reflux disease. J Pharmacol Exp Ther. 2009 Feb;328(2):671-9.

Additional Infomation
Inhibition of H+,K+-ATPase Activity in Vitro. PF-03716556 inhibited H+,K+-ATPase activity of porcine ion-leaky membrane vesicles in a concentration-dependent manner, with a pIC50 value of 6.026 ± 0.112 at pH 6.4 (Fig. 2A). In the ion-leaky membranes of canine vesicles and human recombinant cells, the pIC50 values at pH 6.4 were 6.038 ± 0.039 (Fig. 2A) and 6.009 ± 0.209 (Fig. 2B), respectively. In porcine ion-leaky membrane vesicles, revaprazan and omeprazole inhibited H+,K+-ATPase activity in a ...[1]
The gastric H+,K+-ATPase, a transmembrane enzyme present in parietal cells, is the target molecule for APAs. In this study, we assessed the inhibitory effect of PF-03716556 on the gastric H+,K+-ATPase in the enzymatic fraction (ion-leaky assay) or on the enzyme within ion-tight vesicles (ion-tight assay). Isolated ion-tight vesicles have a low ion-permeability; because the binding site for both K+ and APAs resides inside ion-tight vesicles, enzymatic action of the gastric H+,K+-ATPase exchanges...[1]
Inhibition of H(+),K(+)-ATPase is accepted as the most effective way of controlling gastric acid secretion. However, current acid suppressant therapy for gastroesophageal reflux disease, using histamine H(2) receptor antagonists and proton pump inhibitors, does not fully meet the needs of all patients because of their mechanism of action. This study sought to characterize the in vitro and in vivo pharmacology of a novel acid pump antagonist, N-(2-Hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide (PF-03716556), and to compare it with other acid suppressants. Porcine, canine, and human recombinant gastric H(+),K(+)-ATPase activities were measured by ion-leaky and ion-tight assay. The affinities for a range of receptors, ion channels, and enzymes were determined to analyze selectivity profile. Acid secretion in Ghosh-Schild rats and Heidenhain pouch dogs were measured by titrating perfusate and gastric juice samples. PF-03716556 demonstrated 3-fold greater inhibitory activity than 5,6-dimethyl-2-(4-fluorophenylamino)-4-(1-methyl-1,2,3,4-tetrahydroisoquinoline-2-yl)pyrimidine (revaprazan), the only acid pump antagonist that has been available on the market, in ion-tight assay. The compound did not display any species differences, exhibiting highly selective profile including the canine kidney Na(+),K(+)-ATPase. Kinetics experiments revealed that PF-03716556 has a competitive and reversible mode of action. More rapid onset of action than 5-methoxy-2-{[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]-sulfinyl}-benzimidazole (omeprazole) and 3-fold greater potency than revaprazan were observed in Ghosh-Schild rats and Heidenhain pouch dogs. PF-03716556, a novel acid pump antagonist, could improve upon or even replace current pharmacological treatment for gastroesophageal reflux disease.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H26N4O3
Molecular Weight
394.47
Exact Mass
394.2
Elemental Analysis
C, 66.99; H, 6.64; N, 14.20; O, 12.17
CAS #
928774-43-0
Related CAS #
928774-43-0
PubChem CID
25134521
Appearance
White to yellow solid powder
Density
1.3±0.1 g/cm3
Melting Point
143-145°C
Index of Refraction
1.651
LogP
2.6
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
5
Heavy Atom Count
29
Complexity
576
Defined Atom Stereocenter Count
1
SMILES
CC1=C2[C@@H](CCOC2=CC=C1)NC3=CC(=CN4C3=NC(=C4)C)C(=O)N(C)CCO
InChi Key
YBHKBMJREUZHOV-QGZVFWFLSA-N
InChi Code
InChI=1S/C22H26N4O3/c1-14-5-4-6-19-20(14)17(7-10-29-19)24-18-11-16(22(28)25(3)8-9-27)13-26-12-15(2)23-21(18)26/h4-6,11-13,17,24,27H,7-10H2,1-3H3/t17-/m1/s1
Chemical Name
N-(2-hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide
Synonyms
PF-3716556; 928774-43-0; PF-03716,556; PF-3716,556; PF03716,556; PF 03716,556; PF 3716,556; (R)-N-(2-hydroxyethyl)-N,2-dimethyl-8-((5-methylchroman-4-yl)amino)imidazo[1,2-a]pyridine-6-carboxamide; 701L6668UD; PF 3716556; PF3716556; PF-03716556; PF 03716556; PF03716556
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 79 mg/mL (200.3 mM)
Water:<1 mg/mL
Ethanol:79 mg/mL (200.3 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5350 mL 12.6752 mL 25.3505 mL
5 mM 0.5070 mL 2.5350 mL 5.0701 mL
10 mM 0.2535 mL 1.2675 mL 2.5350 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us