Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
PF 3716556 (PF3716556; PF-3716556) is a novel, potent and selective P-CAB (potassium-competitive acid blocker: acid pump antagonist) with anti-acid reflux activity. It inhibits P-CAB with pIC50 of 6.026 and 7.095 for the inhibition of porcine H+,K+-ATPase activity in ion-leaky and ion-tight assay, respectively. PF-3716556 inhibits gastric acid secretion and thus has the potential for the treatment of gastroesophageal reflux disease. It displays no activity at Na+,K+-ATPase. PF-03716556 did not display any species differences, exhibiting highly selective profile including the canine kidney Na(+),K(+)-ATPase.
Targets |
H+/K+-ATPase or acid pump (pIC50 = ~6.0)
|
---|---|
ln Vitro |
PF 03716556, with a pIC50 of 7.095 at pH 7.4, inhibits H+, K+-ATPase activity in porcine ion tight membrane vesicles in a concentration-dependent manner[1]. The affinities for a range of receptors, ion channels, and enzymes were determined to analyze selectivity profile. Acid secretion in Ghosh-Schild rats and Heidenhain pouch dogs were measured by titrating perfusate and gastric juice samples. PF-03716556 demonstrated 3-fold greater inhibitory activity than 5,6-dimethyl-2-(4-fluorophenylamino)-4-(1-methyl-1,2,3,4-tetrahydroisoquinoline-2-yl)pyrimidine (revaprazan), the only acid pump antagonist that has been available on the market, in ion-tight assay. The compound did not display any species differences, exhibiting highly selective profile including the canine kidney Na(+),K(+)-ATPase. Kinetics experiments revealed that PF-03716556 has a competitive and reversible mode of action.
|
ln Vivo |
Rats treated with PF 03716556 (1–10 mg/kg; intraduodenal; once; male Sprague-Dawley rats) exhibit dose-dependent inhibition of gastric acid output [1].More rapid onset of action than 5-methoxy-2-{[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]-sulfinyl}-benzimidazole (omeprazole) and 3-fold greater potency than revaprazan were observed in Ghosh-Schild rats and Heidenhain pouch dogs. PF-03716556, a novel acid pump antagonist, could improve upon or even replace current pharmacological treatment for gastroesophageal reflux disease.
|
Animal Protocol |
Animal/Disease Models: Male SD (Sprague-Dawley) rats (250 -300 g) treated with Pentagastrin[1]
Doses: 1 mg/kg, 3 mg/kg, 10 mg/kg Route of Administration: Intraduodenal administration; once Experimental Results: Inhibited gastric acid secretion in a dose-dependent manner. |
References | |
Additional Infomation |
Inhibition of H+,K+-ATPase Activity in Vitro. PF-03716556 inhibited H+,K+-ATPase activity of porcine ion-leaky membrane vesicles in a concentration-dependent manner, with a pIC50 value of 6.026 ± 0.112 at pH 6.4 (Fig. 2A). In the ion-leaky membranes of canine vesicles and human recombinant cells, the pIC50 values at pH 6.4 were 6.038 ± 0.039 (Fig. 2A) and 6.009 ± 0.209 (Fig. 2B), respectively. In porcine ion-leaky membrane vesicles, revaprazan and omeprazole inhibited H+,K+-ATPase activity in a ...[1]
The gastric H+,K+-ATPase, a transmembrane enzyme present in parietal cells, is the target molecule for APAs. In this study, we assessed the inhibitory effect of PF-03716556 on the gastric H+,K+-ATPase in the enzymatic fraction (ion-leaky assay) or on the enzyme within ion-tight vesicles (ion-tight assay). Isolated ion-tight vesicles have a low ion-permeability; because the binding site for both K+ and APAs resides inside ion-tight vesicles, enzymatic action of the gastric H+,K+-ATPase exchanges...[1] Inhibition of H(+),K(+)-ATPase is accepted as the most effective way of controlling gastric acid secretion. However, current acid suppressant therapy for gastroesophageal reflux disease, using histamine H(2) receptor antagonists and proton pump inhibitors, does not fully meet the needs of all patients because of their mechanism of action. This study sought to characterize the in vitro and in vivo pharmacology of a novel acid pump antagonist, N-(2-Hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide (PF-03716556), and to compare it with other acid suppressants. Porcine, canine, and human recombinant gastric H(+),K(+)-ATPase activities were measured by ion-leaky and ion-tight assay. The affinities for a range of receptors, ion channels, and enzymes were determined to analyze selectivity profile. Acid secretion in Ghosh-Schild rats and Heidenhain pouch dogs were measured by titrating perfusate and gastric juice samples. PF-03716556 demonstrated 3-fold greater inhibitory activity than 5,6-dimethyl-2-(4-fluorophenylamino)-4-(1-methyl-1,2,3,4-tetrahydroisoquinoline-2-yl)pyrimidine (revaprazan), the only acid pump antagonist that has been available on the market, in ion-tight assay. The compound did not display any species differences, exhibiting highly selective profile including the canine kidney Na(+),K(+)-ATPase. Kinetics experiments revealed that PF-03716556 has a competitive and reversible mode of action. More rapid onset of action than 5-methoxy-2-{[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]-sulfinyl}-benzimidazole (omeprazole) and 3-fold greater potency than revaprazan were observed in Ghosh-Schild rats and Heidenhain pouch dogs. PF-03716556, a novel acid pump antagonist, could improve upon or even replace current pharmacological treatment for gastroesophageal reflux disease.[1] |
Molecular Formula |
C22H26N4O3
|
|
---|---|---|
Molecular Weight |
394.47
|
|
Exact Mass |
394.2
|
|
Elemental Analysis |
C, 66.99; H, 6.64; N, 14.20; O, 12.17
|
|
CAS # |
928774-43-0
|
|
Related CAS # |
|
|
PubChem CID |
25134521
|
|
Appearance |
White to yellow solid powder
|
|
Density |
1.3±0.1 g/cm3
|
|
Melting Point |
143-145°C
|
|
Index of Refraction |
1.651
|
|
LogP |
2.6
|
|
Hydrogen Bond Donor Count |
2
|
|
Hydrogen Bond Acceptor Count |
5
|
|
Rotatable Bond Count |
5
|
|
Heavy Atom Count |
29
|
|
Complexity |
576
|
|
Defined Atom Stereocenter Count |
1
|
|
SMILES |
CC1=C2[C@@H](CCOC2=CC=C1)NC3=CC(=CN4C3=NC(=C4)C)C(=O)N(C)CCO
|
|
InChi Key |
YBHKBMJREUZHOV-QGZVFWFLSA-N
|
|
InChi Code |
InChI=1S/C22H26N4O3/c1-14-5-4-6-19-20(14)17(7-10-29-19)24-18-11-16(22(28)25(3)8-9-27)13-26-12-15(2)23-21(18)26/h4-6,11-13,17,24,27H,7-10H2,1-3H3/t17-/m1/s1
|
|
Chemical Name |
N-(2-hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5350 mL | 12.6752 mL | 25.3505 mL | |
5 mM | 0.5070 mL | 2.5350 mL | 5.0701 mL | |
10 mM | 0.2535 mL | 1.2675 mL | 2.5350 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.