yingweiwo

Palmitoyl-L-carnitine

Alias: L-Carnitine palmitoyl ester; palmitoyl carnitine; L-Palmitoylcarnitine; Palmitoyl-L-carnitine; 2364-67-2; O-palmitoyl-L-carnitine; Hexadecanoyl-L-carnitine; Palmityl-L-carnitine; L-Carnitine palmitoyl ester; Hexadecanoyl-L-carnitine; Palmitoyl-L-carnitine
Cat No.:V24179 Purity: ≥98%
Palmitoyl-L-carnitine is a novel and potent bioactive compound
Palmitoyl-L-carnitine
Palmitoyl-L-carnitine Chemical Structure CAS No.: 2364-67-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Palmitoyl-L-carnitine:

  • D-Palmitoylcarnitine chloride
  • Palmitoyl-DL-carnitine chloride
  • L-Palmitoylcarnitine chloride
  • Palmitoylcarnitine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Palmitoyl-L-carnitine, also known as L-Palmitoylcarnitine, is a biochemical compound that can modulate the activity of various enzymes and transporters. It is primarily localized in the mitochondrial membrane, where it plays a crucial role in transporting long-chain fatty acids from the cytoplasm into the mitochondria during fatty acid oxidation. Studies have shown that L-Palmitoylcarnitine accumulates in ischemic myocardium and may contribute to myocardial damage by disrupting membrane molecular dynamics.
Biological Activity I Assay Protocols (From Reference)
Targets
Kir6.2 Human Endogenous Metabolite
ln Vitro
Sarcolemmal adenosine 5'-triphosphate-sensitive K+ channels (K(ATP)) are dramatically up-regulated by a membrane phospholipid, phosphatidyl-inositol-4,5-bisphosphate (PIP2). During ischaemia, L-palmitoylcarnitine(L-PC), a fatty acid metabolite, accumulates in the sarcolemma and deranges the membrane lipid environment. We therefore investigated whether alteration of the membrane lipid environment by L-palmitoylcarnitine/L-PC modulates the K(ATP) channel activity in inside-out patches from guinea-pig ventricular myocytes. L-PC (1 microM) inhibited KATP channel activity, without affecting the single channel conductance, through interaction with Kir6.2. L-PC simultaneously enhanced the ATP sensitivity of the channel [concentration for half-maximal inhibition (IC50) fell from 62.0+/-2.7 to 30.3+/-5.5 microM]. In contrast, PIP2 attenuated the ATP sensitivity (IC50 343.6+/-54.4 microM) and restored Ca2+-induced inactivation of KATP channels (94.1+/-13.7% of the control current immediately before the Ca2+-induced inactivation). Pretreatment of the patch membrane with 1 microM L-PC, however, reduced the magnitude of the PIP2-induced recovery to 22.7+/-6.3% of the control (P<0.01 vs. 94.1+/-13.7% in the absence of L-PC). Conversely, after the PIP2-induced recovery, L-PC's inhibitory action was attenuated, but L-PC partly reversed the PIP2-mediated decrease in the ATP sensitivity (IC50 fell from 310+/-19.2 to 93.1+/-9.8 microM). Thus, interaction between L-PC and PIP2 in the plasma membrane appears to regulate K(ATP) channels [1].
ln Vivo
Palmitoyl-l-carnitine (PC) or L-palmitoylcarnitine, an ischemic metabolite, causes cellular Na+ and Ca2+ overload and cardiac dysfunction. This study determined whether ranolazine [(±)-1-piperazineacetamide, N-(2,6-dimethylphenyl)-4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]-] attenuates PC-induced Na+ current and ventricular contractile dysfunction of the isolated heart. PC/L-palmitoylcarnitine (4 μM, 30 min) increased late Na+ current by 1034 ± 349% in guinea pig isolated ventricular myocytes; ranolazine (10 μM) and tetrodotoxin (TTX, 3 μM) significantly attenuated this effect of PC. PC increased left ventricular end-diastolic pressure (LVEDP), coronary perfusion pressure (CPP), wall stiffness, and cardiac lactate and adenosine release from the isolated heart. Ranolazine (10 μM) significantly reduced the PC-induced increase in LVEDP by 72 ± 6% (n = 6, p < 0.001), reduced left ventricular wall stiffness, and attenuated the PC-induced increase of CPP by 53 ± 10% (n = 6–7, p < 0.05). Ranolazine (10 μM) reduced the PC-induced increases of lactate and adenosine release by 70 ± 8 and 81 ± 5%, respectively (n = 6, p ≤ 0.05 for both). TTX (2 μM) significantly (p < 0.05) reduced PC-induced increases of CPP and LVEDP. Pretreatment of isolated myocytes or hearts with the free radical scavenger tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid, disodium salt) (1 mM) significantly reduced the effects of PC to cause increases of late Na+ current and LVEDP, respectively, but unlike ranolazine or TTX, tiron did not reverse increases of late Na+ current and LVEDP caused by PC. In summary, ranolazine and TTX, inhibitors of the late Na+ current, attenuated the PC-induced ventricular contractile dysfunction and increase of coronary resistance in the guinea pig isolated heart [2].
Cell Assay
Truncation of Kir6.2 complementary deoxyribonucleic acid (cDNA) and expression of recombinant Kir6.2∆36 channel in COS7 cells [1]
Kir6.2∆36, in which the last 36 amino acids were truncated from the C-terminus, was constructed by the polymerase chain reaction (PCR), inserting a stop codon at the appropriate position. The resulting PCR product was verified by sequencing. cDNAs of Kir6.2∆36 and human CD8 antigen were subcloned into the pCI and pIRES vectors (Promega, USA), respectively. Mixtures containing the above vectors: 0.4 Kir6.2∆36 and 0.4 CD8 (µg/dish), were co-transfected into COS7 cells with Lipofectamine reagent and Opti-MEM (Gibco/BRL). After transfection (48 h), successfully transfected cells were identified with anti-CD8 antibody-coated beads.
Electrophysiology [1]
Single ventricular cells or Kir6.2∆36 channel-expressing COS7 cells on a glass cover-slip were transferred into a recording chamber and superfused with normal Tyrode’s solution containing (in mM): 5.4 KCl, 143 NaCl, 0.3 NaH2PO4, 0.5 MgCl2, 1.8 CaCl2, 5.0 4-(2- hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES)/NaOH (pH 7.4 adjusted by NaOH). The electrode resistance of the patch pipettes was 3–5 MΩ when filled with normal Tyrode’s solution. After the gigaohm seal had been obtained at room temperature (22–25 °C), the patch membrane was excised in a high-K+ solution (in mM): 150 KCl, 0.5 ethyleneglycol-bis-(β-aminoethylether)- N,N,N′,N′-tetraacetic acid (EGTA), and 5.0 HEPES (pH 7.4 adjusted by KOH).
Animal Protocol
This study determined whether ranolazine [(+/-)-1-piperazineacetamide, N-(2,6-dimethylphenyl)-4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]-] attenuates PC (L-palmitoylcarnitine)-induced Na(+) current and ventricular contractile dysfunction of the isolated heart. PC/L-palmitoylcarnitine (4 microM, 30 min) increased late Na(+) current by 1034 +/- 349% in guinea pig isolated ventricular myocytes; ranolazine (10 microM) and tetrodotoxin (TTX, 3 microM) significantly attenuated this effect of PC. PC/L-palmitoylcarnitine increased left ventricular end-diastolic pressure (LVEDP), coronary perfusion pressure (CPP), wall stiffness, and cardiac lactate and adenosine release from the isolated heart [2].
Toxicity/Toxicokinetics
mouse LD50 subcutaneous 1 gm/kg Acta Biologica et Medica Germanica., 26(1237), 1971 [PMID:5153312]
References
[1]. Alteration of the membrane lipid environment by L-palmitoylcarnitine modulates K(ATP) channels in guinea-pig ventricular myocytes. Pflugers Arch. 2000;441(2-3):200-207.
[2]. The Late Na+ Current (INa) Inhibitor Ranolazine Attenuates Effects of Palmitoyl-L-Carnitine to Increase Late INa and Cause Ventricular Diastolic Dysfunction. J Pharmacol Exp Ther. 2009 Aug;330(2):550-7.
Additional Infomation
O-palmitoyl-L-carnitine is an O-acyl-L-carnitine in which the acyl group is specified as palmitoyl (hexadecanoyl). It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor, a human metabolite and a mouse metabolite. It is an O-palmitoylcarnitine, a saturated fatty acyl-L-carnitine and a long-chain fatty acyl-L-carnitine. It is functionally related to a hexadecanoic acid.
L-Palmitoylcarnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
L-Palmitoylcarnitine has been reported in Homo sapiens and Apis cerana with data available.
L-Palmitoylcarnitine is a metabolite found in or produced by Saccharomyces cerevisiae.
Hexadecanoylcarnitine is a metabolite found in or produced by Saccharomyces cerevisiae.
A long-chain fatty acid ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H45NO4
Molecular Weight
399.61
Exact Mass
399.335
Elemental Analysis
C, 69.13; H, 11.35; N, 3.51; O, 16.01
CAS #
2364-67-2
Related CAS #
28330-02-1; 2364-67-2; 6865-14-1; 18877-64-0; 1935-18-8
PubChem CID
11953816
Appearance
White to off-white solid powder
LogP
4.225
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
19
Heavy Atom Count
28
Complexity
398
Defined Atom Stereocenter Count
1
SMILES
CCCCCCCCCCCCCCCC(O[C@H](CC([O-])=O)C[N+](C)(C)C)=O
InChi Key
XOMRRQXKHMYMOC-OAQYLSRUSA-N
InChi Code
InChI=1S/C23H45NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-23(27)28-21(19-22(25)26)20-24(2,3)4/h21H,5-20H2,1-4H3/t21-/m1/s1
Chemical Name
(3R)-3-hexadecanoyloxy-4-(trimethylazaniumyl)butanoate
Synonyms
L-Carnitine palmitoyl ester; palmitoyl carnitine; L-Palmitoylcarnitine; Palmitoyl-L-carnitine; 2364-67-2; O-palmitoyl-L-carnitine; Hexadecanoyl-L-carnitine; Palmityl-L-carnitine; L-Carnitine palmitoyl ester; Hexadecanoyl-L-carnitine; Palmitoyl-L-carnitine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5024 mL 12.5122 mL 25.0244 mL
5 mM 0.5005 mL 2.5024 mL 5.0049 mL
10 mM 0.2502 mL 1.2512 mL 2.5024 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us