Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Topoisomerase IV/II
|
---|---|
ln Vitro |
Marbofloxacin is an antimicrobial fluoroquinolone that was created specifically for veterinary use. High bactericidal activity is demonstrated by marbofloxacin against Mycoplasma spp. and a wide range of aerobic Gram-negative and some Gram-positive bacteria. Marbofloxacin, a third-generation fluoroquinolone, primarily targets enzymes involved in transcription and replication, including DNA gyrase and topoisomerase IV, both of which are critical to the survival of bacteria. During the exponential phase, but not the lag phase, marbofloxacin exhibits a mycoplasmacidal effect on M. hyopneumoniae 116 wild-type strain and a clone that was isolated 4 days after in vivo treatment with the therapeutic dose.[1] In a dose-dependent manner, marbofloxacin significantly kills Leishmania promastigotes and intracellular amastigotes, outperforming sodium stibogluconate and meglumine antimoniate. Following Marbofloxacin therapy, the NO synthase pathway confers enhanced antileishmanial activity and infection resistance in macrophages.[2]
|
ln Vivo |
The study found that marbofloxacin 6 mg/kg, given once daily for seven days, was ineffective in curing Staphylococcus aureus infections in hidden areas when it came to infections in pony tissue cages [2]. Following the intravenous, subcutaneous, and oral administration of a single dose of 2 mg/kg bwt in six horses, the pharmacokinetic properties of marbofloxacin were investigated, and the minimum inhibition of bacteria isolated from equine infectious illnesses was evaluated. Bacterial concentration (MIC). The terminal half-life of marbofloxacin is 756 +/- 1.99 hours, and the clearance rate is mean +/- standard deviation 0.25 +/- 0.05 l/kg/h. Following subcutaneous and oral dosing, marbofloxacin had an absolute bioavailability of 98 +/- 11% and 62 +/- 8%, respectively. The intravenous, subcutaneous, or oral route of marbofloxacin dosage regimen of 2 mg/kg body weight/24 hours is more favorable for Enterobacteriaceae than for Staphylococcus aureus, when considering the breakpoint value of the fluoroquinolone efficacy index [3].
Marbofloxacin treatment at the therapeutic dose is not effective in significantly reducing clinical signs and does not eradicate M. hyopneumoniae, as 87.5 to 100% of the pigs remain positive at the conclusion of the assays. However, treatment with marbofloxacin appears to lower the lung lesion scores.[1] Treating a Staphylococcus aureus infection in tissue cages in ponies with a once-daily dose of marbofloxacin at a dose of 6 mg/kg for seven days does not effectively eradicate S. aureus infections from isolated locations.[3] |
Animal Protocol |
SPF piglets inoculated intratracheally with M. hyopneumoniae strain 116
~2 mg/kg/day Intramuscular injection Tissue cages (TC), implanted subcutaneously in the neck in eight ponies, were inoculated with Staphylococcus aureus (S. aureus) to determine the clinical efficacy of marbofloxacin in the treatment of this infection. From 21 h after inoculation, marbofloxacin (6 mg/kg) was administered intravenously (i.v.) once daily for 7 days. Samples of the tissue cage fluid (TCF) were taken to determine marbofloxacin concentrations (days 1, 3 and 7), using high-pressure liquid chromatography, and numbers of viable bacteria [colony forming units (CFU)] (days 1, 3, 7, 14 and 21). Statistical analysis was used to compare CFU before and after treatment. Clinical signs and CFU were used to evaluate the efficacy of treatment. Although, there was a slight decrease in CFU in all TC initially, the infection was not eliminated by marbofloxacin treatment in any of the ponies and abscesses formed. As the MIC (0.25 microg/mL) did not change during treatment and the concentration of marbofloxacin during treatment (mean concentration in TCF was 0.89 microg/mL on day 1, 0.80 microg/mL on day 3 and 2.77 microg/mL on day 7) was above MIC, we consider that the treatment failure might be attributable to the formation of a biofilm by S. aureus. Based on the present results, i.v. administration of marbofloxacin alone is not suitable for the elimination of S. aureus infections from secluded sites.[2] |
ADME/Pharmacokinetics |
Marbofloxacin is a fluoroquinolone antibiotic expected to be effective in the treatment of infections involving gram-negative and some gram-positive bacteria in horses. In order to design a rational dosage regimen for the substance in horses, the pharmacokinetic properties of marbofloxacin were investigated in 6 horses after i.v., subcutaneous and oral administration of a single dose of 2 mg/kg bwt and the minimal inhibitory concentrations (MIC) assessed for bacteria isolated from equine infectious pathologies. The clearance of marbofloxacin was mean +/- s.d. 0.25 +/- 0.05 l/kg/h and the terminal half-life 756 +/- 1.99 h. The marbofloxacin absolute bioavailabilities after subcutaneous and oral administration were 98 +/- 11% and 62 +/- 8%, respectively. The MIC required to inhibit 90% of isolates (MIC90) was 0.027 microg/ml for enterobacteriaceae and 0.21 microg/ml for Staphylococcus aureus. The values of surrogate markers of antimicrobial efficacy (AUIC, Cmax/MIC ratio, time above MIC90) were calculated and the marbofloxacin concentration profiles simulated for repeated administrations. These data were used to determine rational dosage regimens for target bacteria. Considering the breakpoint values of efficacy indices for fluoroquinolones, a marbofloxacin dosage regimen of 2 mg/kg bwt/24 h by i.v., subcutaneous or oral routes was more appropriate for enterobacteriaceae than for S. aureus. [3]
|
Toxicity/Toxicokinetics |
mouse LD50 oral >2 gm/kg United States Patent Document., #4801584
|
References | |
Additional Infomation |
LSM-5799 is a member of quinolines.
Marbofloxacin is a carboxylic acid, part of the third generation of antibiotic fluoroquinolones. It is used in veterinary medicine. A formulation of marbofloxacin combined with clotrimazole and dexamethasone is available under the name Aurizon. IN THE TITLE COMPOUND, [SYSTEMATIC NAME: 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-piperazin-1-yl)-7-oxo-7H-pyrido[1,2,3-ij][1,2,4]benzoxadiazine-6-carb-oxy-lic acid], C(17)H(19)FN(4)O(4), the carbonyl and carboxyl groups are coplanar with the quinoline ring, making a dihedral angle of 2.39 (2)°. The piperazine ring adopts a chair conformation and the oxadiazinane ring displays an envelope conformation with the CH(2) group at the flap displaced by 0.650 (2) Å from the plane through the other five atoms. The mol-ecular structure exhibits an S(6) ring motif, owing to an intra-molecular O-H⋯O hydrogen bond. In the crystal, weak C-H⋯F hydrogen bonds link mol-ecules into layers parallel to the ab plane.[1] |
Molecular Formula |
C17H20CLFN4O4
|
---|---|
Molecular Weight |
398.8165
|
Exact Mass |
398.116
|
CAS # |
115551-26-3
|
Related CAS # |
Marbofloxacin;115550-35-1
|
PubChem CID |
14576609
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
1.378
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
27
|
Complexity |
636
|
Defined Atom Stereocenter Count |
0
|
SMILES |
Cl[H].FC1C([H])=C2C(C(C(=O)O[H])=C([H])N3C2=C(C=1N1C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])C1([H])[H])OC([H])([H])N3C([H])([H])[H])=O
|
InChi Key |
OCRYFLKYXNBUEY-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C17H19FN4O4.ClH/c1-19-3-5-21(6-4-19)14-12(18)7-10-13-16(14)26-9-20(2)22(13)8-11(15(10)23)17(24)25;/h7-8H,3-6,9H2,1-2H3,(H,24,25);1H
|
Chemical Name |
7-fluoro-2-methyl-6-(4-methylpiperazin-1-yl)-10-oxo-4-oxa-1,2-diazatricyclo[7.3.1.05,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid;hydrochloride
|
Synonyms |
Marbofloxacin (hydrochloride); Marbofloxacin hydrochloride; 115551-26-3; 7-fluoro-2-methyl-6-(4-methylpiperazin-1-yl)-10-oxo-4-oxa-1,2-diazatricyclo[7.3.1.05,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid;hydrochloride; 9-Fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,3,4]oxadiazino[6,5,4-ij]quinoline-6-carboxylic acid hydrochloride; Marbofloxacinhydrochloride; W3C3ZZ8R2D; SCHEMBL10563057;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5074 mL | 12.5370 mL | 25.0740 mL | |
5 mM | 0.5015 mL | 2.5074 mL | 5.0148 mL | |
10 mM | 0.2507 mL | 1.2537 mL | 2.5074 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.