Lexibulin hydrochloride (CYT 997)

Cat No.:V24048 Purity: ≥98%
Lexibulin hydrochloride (CYT-997), the hydrochloride salt ofCYT997, is a potent VDA-vascular disrupting agent and also apotent microtubule polymerization/mitotic inhibitor with potential anticancer activity.
Lexibulin hydrochloride (CYT 997) Chemical Structure CAS No.: 917111-49-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
25mg
50mg
100mg
250mg
500mg

Other Forms of Lexibulin hydrochloride (CYT 997):

  • Lexibulin (CYT-997)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Lexibulin hydrochloride (CYT-997), the hydrochloride salt of CYT997, is a potent VDA-vascular disrupting agent and also a potent microtubule polymerization/mitotic inhibitor with potential anticancer activity. It inhibits the proliferation of various cancer cells with IC50s of 10-100 nM. It belongs to the so called microtubule-destablizer which inhibits the dynamic instability and polymerization of tubulin.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In vitro, lexibulin (CYT-997) inhibits tubulin polymerization with an IC50 of roughly 3 μmol/L by traditional turbidimetry (as opposed to the half-maximum inhibitory concentration of colchicine, which is 2 μmol/L in the same circumstances). Tuberculin polymerization. Furthermore, as demonstrated by fluorescent microscopy, lexibulin has the capacity to reversibly damage the microtubule network within cells. The application of Lexibulin (1 μM) to A549 cells causes a fast reconfiguration of microtubules, causing some cells to accumulate tubulin in intracytoplasmic plaques and others to break the preexisting microtubule network. The morphology of the cells underwent notable alterations after 24 hours, such as rounding and lack of adhesion. Following a one-hour Lexibulin treatment, cells quickly recovered their original microtubule structure. These effects were reversible. All of the information points to lexibulin as an anticancer medication that upsets tubulin-containing structures rather than stabilizes them. The G2-M phase was observed in 15% and 19% of vehicle-treated cells at 15 and 24 hours (respectively), but 38% and 43% of cells treated with 1 μM Lexibulin displayed G2-M phase at the same time point. phase G2-M. Further evidence that cells halted at the G2-M boundary may not exit back to G1, as in the normal cell cycle, but are instead likely to be driven to apoptosis and cell death comes from the fact that only 66% of total cells were in G1, S, and G2-M phases 24 hours after Lexibulin administration [1]. Lexibulin efficiently reduces proliferation, produces cell cycle arrest, and—most importantly—induces apoptosis in human myeloma cell lines (HMCL) and genuine MM cells, all of which are consistent with the breakdown of cellular tubulin [2].
ln Vivo
Oral administration of Lexibulin (CYT-997) was started 13 days following cell engraftment in a xenograft model using the human prostate cancer cell line PC3, at which point tumors were evidently obvious. The tumor development is significantly inhibited by lexibulin (CYT-997) at doses up to and including parenterally administered paclitaxel at the highest dose. In liver metastases, a single dosage of lexibulin (CYT-997) (7.5 mg/kg ip) dramatically decreased blood flow; this effect persisted six hours after treatment [1]. A mouse model of aggressive systemic myeloma showed a significant increase in survival with lexibulin (CYT-997) treatment (15 mg/kg/day) [2].
References
[1]. Burns CJ, et al. CYT997: a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity in vitro and in vivo. Mol Cancer Ther. 2009 Nov;8(11):3036-45.
[2]. Monaghan K, et al. CYT997 causes apoptosis in human multiple myeloma. Invest New Drugs. 2011 Apr;29(2):232-8.
[3]. Ya Cao, wt al. Mitochondrial ROS Accumulation Inhibiting JAK2/STAT3 Pathway Is a Critical Modulator of CYT997-induced Autophagy and Apoptosis in Gastric Cancer. J Exp Clin Cancer Res. 2020 Jun 23;39(1):119.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₄H₃₂CL₂N₆O₂
Molecular Weight
507.46
CAS #
917111-49-0
Related CAS #
Lexibulin;917111-44-5
SMILES
CCC[C@H](NC1=C(C)C=NC(C2=CC=C(NC(NCC)=O)C(OC)=C2)=N1)C3=CN=CC=C3.[H]Cl.[H]Cl
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9706 mL 9.8530 mL 19.7060 mL
5 mM 0.3941 mL 1.9706 mL 3.9412 mL
10 mM 0.1971 mL 0.9853 mL 1.9706 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top