yingweiwo

Levobetaxolol

Alias: Levobetaxolol; (S)-Betaxolol; Levobetaxolol; (S)-Betaxolol; 93221-48-8; (-)-Betaxolol; (S)-(-)-Betaxolol; Levobetaxolol [INN]; Betaxolol, (s)-; (2S)-1-[4-[2-(cyclopropylmethoxy)ethyl]phenoxy]-3-(propan-2-ylamino)propan-2-ol; (S)-(-)-Betaxolol
Cat No.:V12162 Purity: ≥98%
Levobetaxolol (also known as AL 1577A; Betaxon and AL-1577A), a potent beta-adrenergic receptor inhibitor /beta blocker, is the S-isomer ofbetaxololwhichexhibits a higher affinity at cloned human β1 and β2 receptors with Ki value of 0.76 nM and 32.6 nM, respectively.
Levobetaxolol
Levobetaxolol Chemical Structure CAS No.: 93221-48-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Levobetaxolol:

  • Levobetaxolol HCl (AL-1577A)
  • Betaxolol HCl (SL75212)
  • Betaxolol-d5 (Betaxolol d5)
  • Betaxolol (SL75212)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Levobetaxolol (also known as AL 1577A; Betaxon and AL-1577A), a potent beta-adrenergic receptor inhibitor /beta blocker, is the S-isomer of betaxolol which exhibits a higher affinity at cloned human β1 and β2 receptors with Ki value of 0.76 nM and 32.6 nM, respectively. It is used to lower the pressure in the eye in treating conditions such as glaucoma. Levobetaxolol potently antagonizes functional activities at cloned human β1 and β2 receptors, respectively. Levobetaxolol (Ki = 16.4 nM) is more potent than dextrobetaxolol (Ki = 2.97 μM) at inhibiting isoproterenol-induced cAMP production in human non-pigmented ciliary epithelial cells.

Biological Activity I Assay Protocols (From Reference)
Targets
β1-adrenergic receptor ( Ki = 0.76 nM ); β2-adrenergic receptor ( Ki = 32.6 nM )
ln Vitro
Levobetaxolol has a greater affinity with Ki values of 0.76 and 32.6 nM for cloned human β1 and β2 receptors, respectively [1]. With Kb values of 6 and 39 nM, respectively, levobetaxolol suppresses the functional activity of cells expressing human recombinant β1 and β2 receptors [1].
ln Vivo
The pharmacological characteristics of levobetaxolol, a single active isomer of betaxolol, were determined and compared with activities of other beta-adrenoceptor antagonists. Levobetaxolol (43-fold beta1-selective) exhibited a higher affinity at cloned human beta1 (Ki = 0.76 nM) than at beta2 (Ki = 32.6 nM) receptors, while dextrobetaxolol was much weaker at both receptors. Levobetaxolol potently antagonized functional activities at cloned human beta1 and beta2 receptors, and also at guinea pig atrial beta1, tracheal beta2 and rat colonic beta3 receptors (IC50s = 33.2 nM, 2970 nM and 709 nM, respectively). Thus, levobetaxolol was 89-times beta1-selective (vs beta2). Levobetaxolol (Ki = 16.4 nM) was more potent than dextrobetaxolol (Ki = 2.97 microM) at inhibiting isoproterenol-induced cAMP production in human non-pigmented ciliary epithelial cells. Levobunolol and (l)-timolol had high affinities at beta1 and beta2 receptors but were considerably less beta1-selective than levobetaxolol. Levo-, dextro- and racemic-betaxolol exhibited little or no affinity, except at sigma sites and Ca2+-channels (IC50s > 1 microM), at 89 other receptor/ligand binding sites. Levobetaxolol exhibited a micromolar affinity for L-type Ca2+-channels. In conscious ocular hypertensive cynomolgus monkeys, levobetaxolol was more potent than dextrobetaxolol, reducing intraocular pressure by 25.9+/-3.2% at a dose of 150 microg/eye (n = 15-30). Quantitative [3H]-levobetaxolol autoradiography revealed high levels of binding to human ciliary processes, iris, choroid/retina, and ciliary muscles. In conclusion, levobetaxolol is a potent, high affinity and beta1-selective IOP-lowering beta-adrenoceptor antagonist.[1]
Levobetaxolol (150 mg/eye) is more potent than dextrobetaxolol, reducing intraocular pressure by 25.9% in conscious ocular hypertensive cynomolgus monkeys. [1] In a rat model of photic-induced retinopathy, Levobetaxolol (20 mg/kg) significantly protects retinal function and causes the RPE and outer nuclear layer to thicken. Levobetaxolol (20 mg/kg) increases the levels of bFGF and CNTF mRNA by a factor of ten and two, respectively. These trophic factors have been demonstrated to prevent retinal degeneration in several species. [3]
Animal Protocol
Rats were dosed (IP) with vehicle or levobetaxolol (10 and 20 mg kg(-1)) 48, 24 and 0 hr prior to exposure for 6 hr to fluorescent blue light. The electroretinogram (ERG) and retinal morphology were assessed after a 3 week recovery period. Evaluation of the ERG demonstrated significant protection of retinal function in levobetaxolol (20 mg kg(-1))-dosed rats compared to vehicle-dosed rats. Similarly, the RPE and outer nuclear layer were significantly thicker in levobetaxolol (20 mg kg(-1))-dosed rats compared to vehicle-dosed rats. To elucidate potential mechanism(s) of the neuroprotective activity of levobetaxolol, bFGF and CNTF mRNA levels in normal rat retinas were evaluated 12 hr after a single i.p. injection. Northern blot analysis of levobetaxolol treated retinas demonstrated a 10-fold up-regulation of bFGF and a two-fold up-regulation of CNTF mRNA levels, trophic factors that have been shown to inhibit retinal degeneration in a number of species. These studies suggest that levobetaxolol can be used as a novel neuroprotective agent to ameliorate retinopathy.[3]
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Levobetaxolol is applied topically to the eye but some does reach systemic circulaton with a Tmax of 3 h.
Biological Half-Life
The mean half life of levobetaxolol is 20 h.
References
[1]. Sharif NA, et al. Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J Ocul Pharmacol Ther. 2001 Aug;17(4):305-17.
[2]. Osborne NN, et al. Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma. Brain Res Bull. 2004 Feb 15;62(6):525-8.
Additional Infomation
(S)-betaxolol is the (S)-enantiomer of betaxolol. It is an enantiomer of a (R)-betaxolol.
Levobetaxolol is a beta-blocker used to lower the pressure in the eye to treat conditions such as glaucoma. It was marketed as a 0.5% ophthalmic solution of levobetaxolol hydrochloride under the trade name Betaxon but has been discontinued.
Levobetaxolol is the S-isomer of betaxolol, a selective beta-1 adrenergic receptor antagonist with anti-glaucoma activity and devoid of intrinsic sympathomimetic activity. When applied topically in the eye, levobetaxolol reduces aqueous humor secretion and lowers the intraocular pressure (IOP).
Drug Indication
Used in the treatment of open-angle glaucoma and ocular hypertension.
FDA Label
Mechanism of Action
The exact mechanism by which levobetaxolol lowers intraocular pressure is not known. It it thought that antagonism of β-adrenergic receptors may reduce the production of aqueous humour stimulated via the cyclic adenosine monophosphate-protein kinase A pathway. It is also thought that the vasoconstriction produced by antagonism of β adrenergic receptors reduces blood flow to the eye and therefore the ultrafiltration responsible for aqueous humour production. β1 selective antagonists are less effective than non-selective β adrenergic receptor antagonists because β2 receptors make up the bulk of the population in the eye. They do, however, come with the benefit of reduced respiratory complications.
Pharmacodynamics
Levobetaxolol is a selective β1 adrenergic receptor antagonist. It acts to lower intraocular pressure. Levobataxolol is condsidered to be the more active component of the betaxolol racemate.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H29NO3
Molecular Weight
307.43
Exact Mass
307.215
CAS #
93221-48-8
Related CAS #
116209-55-3 (HCl); 93221-48-8; Betaxolol hydrochloride; 63659-19-8; Levobetaxolol hydrochloride; 116209-55-3; Betaxolol-d5; 1189957-99-0; 63659-18-7; 93221-48-8 (S-isomer free base); 116209-55-3 (S-isomer HCl)
PubChem CID
60657
Appearance
Typically exists as solid at room temperature
Density
1.067g/cm3
Boiling Point
448ºC at 760 mmHg
Melting Point
71-72ºC
Flash Point
224.7ºC
Index of Refraction
1.529
LogP
2.784
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
11
Heavy Atom Count
22
Complexity
286
Defined Atom Stereocenter Count
1
SMILES
CC(C)NC[C@@H](COC1=CC=C(C=C1)CCOCC2CC2)O
InChi Key
NWIUTZDMDHAVTP-KRWDZBQOSA-N
InChi Code
InChI=1S/C18H29NO3/c1-14(2)19-11-17(20)13-22-18-7-5-15(6-8-18)9-10-21-12-16-3-4-16/h5-8,14,16-17,19-20H,3-4,9-13H2,1-2H3/t17-/m0/s1
Chemical Name
(2S)-1-[4-[2-(cyclopropylmethoxy)ethyl]phenoxy]-3-(propan-2-ylamino)propan-2-ol
Synonyms
Levobetaxolol; (S)-Betaxolol; Levobetaxolol; (S)-Betaxolol; 93221-48-8; (-)-Betaxolol; (S)-(-)-Betaxolol; Levobetaxolol [INN]; Betaxolol, (s)-; (2S)-1-[4-[2-(cyclopropylmethoxy)ethyl]phenoxy]-3-(propan-2-ylamino)propan-2-ol; (S)-(-)-Betaxolol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2528 mL 16.2639 mL 32.5277 mL
5 mM 0.6506 mL 3.2528 mL 6.5055 mL
10 mM 0.3253 mL 1.6264 mL 3.2528 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Levobetaxolol Hydrochloride Eye Drops for Treatment of Primary Open-angle Glaucoma or Ocular Hypertension
CTID: NCT02617459
Phase: Phase 3
Status: Completed
Date: 2023-05-12
Contact Us