KN-93 Phosphate

Alias:
Cat No.:V1299 Purity: ≥98%
KN-93 Phosphate (KN 93; KN93), the phosphate salt of KN-93, is a potent, cell-permeable and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) with potential anti-Parkinsons disease and anticancer activity.
KN-93 Phosphate Chemical Structure CAS No.: 1188890-41-6
Product category: CaMK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of KN-93 Phosphate:

  • KN-93
  • KN-93 HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

KN-93 Phosphate (KN 93; KN93), the phosphate salt of KN-93, is a potent, cell-permeable and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) with potential anti-Parkinson's disease and anticancer activity. It inhibits CaMKII with a Ki of 0.37 μM, and showed no effects on APK, PKC, MLCK or Ca2+-PDE activities. KN-93 suppresses ventricular arrhythmia induced by LQT2 without decreasing TDR. KN-93 inhibits androgen receptor activity and induces cell death irrespective of p53 and Akt status in prostate cancer. KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson's disease. KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced injury.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Ninety-five percent of the cells were in the G1 phase after two days of treatment with KN-93 phosphate. G1 arrest is reversible, and cells peak into the S and G2-M phases one day after KN-93 phosphate is released. KN-93 phosphate also inhibits the proliferation of NIH 3T3 fibroblasts when they are stimulated by platelet-derived growth factor-BB, epidermal growth factor, and basic fibroblast growth factor [1]. While KN-93 phosphate strongly dissipates the proton gradient produced in stomach membrane vesicles and decreases cavity volume, it also inhibits the action of H+ and K+-ATPase [2]. Preventing LV developmental stress rises during action potential extension and early afterdepolarization is possible with KN-93 phosphate (0.5 μM). Early afterdepolarization is characterized by a rise in Ca2+-independent CaM kinase activity, which is inhibited by KN-93 phosphate [3].
ln Vivo
KN-93 (5 μg) ameliorates levodopa-induced dyskinesia by lowering the expression of pGluR1S845 in a rat model of Parkinson’s disease. In MRL/lpr Foxp3-GFP mice, KN-93 results in a significant induction of Treg cells in the spleen, peripheral lymph nodes and peripheral blood, and decreases skin and kidney damage.
Animal Protocol
Dissolved in 4 μL of 0.9% physiological saline containing 0.02% ascorbic acid; 5 μg; Intrastriatal administration
Sprague Dawley female rats
References
Biochem Biophys Res Commun.1991 Dec 31;181(3):968-75;Neuropsychiatr Dis Treat.2013;9:1213-20.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H32CLN2O8PS
Molecular Weight
599.03
CAS #
1188890-41-6
Related CAS #
KN-93;139298-40-1;KN-93 hydrochloride;1956426-56-4
SMILES
CN(C/C=C/C1=CC=C(C=C1)Cl)CC2=CC=CC=C2N(CCO)S(=O)(=O)C3=CC=C(C=C3)OC.OP(=O)(O)O
Chemical Name
(E)-N-(2-(((3-(4-chlorophenyl)allyl)(methyl)amino)methyl)phenyl)-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide phosphate
Synonyms

KN-93 phosphate; KN93; KN 93; KN-93;

Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (166.9 mM)
Water: 92 mg/mL (153.6 mM)
Ethanol:<1 mg/mL
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6694 mL 8.3468 mL 16.6937 mL
5 mM 0.3339 mL 1.6694 mL 3.3387 mL
10 mM 0.1669 mL 0.8347 mL 1.6694 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • KN-93 Phosphate

    KN-93 had no antiparkinsonian effect on PD rats.



    KN-93 Phosphate

    KN-93 treatment reduced levodopa-induced dyskinesia in PD rats.Neuropsychiatr Dis Treat.2013;9:1213-20.
  • KN-93 Phosphate
    Intrastriatal KN-93 treatment reduced pGluR1S845 levels in PD rats. Total protein levels and membrane levels of GluR1 were decreased in PD rats.Neuropsychiatr Dis Treat.2013;9:1213-20.
  • KN-93 Phosphate

    Intrastriatal KN-93 treatment reduced the expression of Gad1 (A) and Nur77 (B) in PD rats. 6-OHDA lesions induced increased Gad1 and Nur77 in PD rats.Neuropsychiatr Dis Treat.2013;9:1213-20.
Contact Us Back to top