yingweiwo

Ibutilide (U-70226E)

Cat No.:V20523 Purity: ≥98%
Ibutilide fumarate (formerly U-70226-E; U 70226 E;U-70226E) is aClass III antiarrhythmic agent used for the treatment of acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm by induction of slow inward sodium current.
Ibutilide (U-70226E)
Ibutilide (U-70226E) Chemical Structure CAS No.: 122647-31-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Ibutilide (U-70226E):

  • Ibutilide Fumarate (U70226E)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Ibutilide fumarate (formerly U-70226-E; U 70226 E; U-70226E) is a Class III antiarrhythmic agent used for the treatment of acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm by induction of slow inward sodium current.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Ibutilide is a strong inhibitor of IKr, with an EC50 value of 20 nM at +20 mV in atrial tumor myocytes (AT-1) cells [1]. It blocked IKr in cells expressing HERG+MDR1*1 to the same degree as it did in cells expressing HERG alone (IC50: 22.5 nM vs 27.4 nM). MDR1*7-expressing cells, on the other hand, demonstrated substantial resistance to ibutilide (IC50: 105.3 nM vs 27.4 nM) [2].
ln Vivo
Both in vivo and in vitro, ibutilide lengthens the cardiac repolarization time [1]. Ibutilide infusion can result in both monomorphic and polymorphic nonsustained ventricular tachycardia [3]. The three cumulative dosages of 0.01, 0.02, and 0.05 mg/kg iv are administered over a period of 10 minutes.
Animal Protocol
Animal/Disease Models: 15 adult mongrel dogs, both male and female [1]
Doses: 0.01, 0.02 and 0.05 mg/kg
Route of Administration: intravenous (iv) (iv)injection; injection administration. Results for each 10-minute infusion: Action potential duration (APD90) at 90% prolongation was Dramatically longer in patients with congestive heart failure (CHF) treated with ibutilide (0.01 mg/kg) compared with controls. An increase in left and right ventricular APD90 dispersion was observed in CHF at 0.01 mg/kg but not in the control group.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Rapid after intravenous injection
In healthy male volunteers, about 82% of a 0.01 mg/kg dose of [14C] ibutilide fumarate was excreted in the urine (about 7% of the dose as unchanged ibutilide) and the remainder (about 19%) was recovered in the feces.
11 L/kg
29 mL/min/kg
Sixteen adult patients with atrial fibrillation or atrial flutter requiring conversion to normal sinus rhythm: six patients who had New York Heart Association (NYHA) class II or III heart failure due to left ventricular dysfunction (mean +/- SD left ventricular ejection fraction (LVEF) 30 +/- 9%); 10 patients who did not have left ventricular dysfunction (mean +/- SD LVEF 54 +/- 5% in six of these 10 patients) served as controls. All patients received a single dose of ibutilide 1.0 mg administered intravenously over 10 minutes. Blood samples were obtained through an indwelling catheter in the contralateral arm before ibutilide administration, at the end of the infusion, and at 5, 15, 30, 45 minutes and 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 24, and 48 hours after the infusion. Serum ibutilide concentrations were determined by using high-performance liquid chromatography and mass spectrometry. No significant differences were noted between the heart failure and normal left ventricular function groups in the following parameters: maximum serum ibutilide concentration (median (interquartile range) 3.8 (2.3-5.7) vs 5.8 (3.1-14.4) ug/L, p=0.31), area under the serum concentration-time curve from time zero extrapolated to infinity (mean +/- SD 11.0 +/- 9.4 vs 13.2 +/- 10.6 ug*hr/L, p=0.88), steady-state volume of distribution (1380 +/- 334 vs 1390 +/- 964 L, p=0.99), systemic clearance (129 +/- 60 vs 125 +/- 81 L/hr, p=0.92), or half-life (12.5 +/- 10.7 vs 12.4 +/- 8.6 hrs, p=0.99). The pharmacokinetics of ibutilide do not appear to be altered in patients with NYHA class II or III heart failure due to left ventricular systolic dysfunction.
In healthy male volunteers, about 82% of a 0.01 mg/kg dose of (14)C ibutilide fumarate was excreted in the urine (about 7% of the dose as unchanged ibutilide) and the remainder (about 19%) was recovered in the feces.
After intravenous infusion, ibutilide plasma concentrations rapidly decrease in a multiexponential fashion. The pharmacokinetics of ibutilide are highly variable among subjects. Ibutilide has a high systemic plasma clearance that approximates liver blood flow (about 29 mL/min/kg), a large steady-state volume of distribution (about 11 L/kg) in healthy volunteers, and minimal (about 40%) protein binding. Ibutilide is also cleared rapidly and highly distributed in patients being treated for atrial flutter or atrial fibrillation. The elimination half-life averages about 6 hours (range from 2 to 12 hours). The pharmacokinetics of ibutilide are linear with respect to the dose of Corvert over the dose range of 0.01 mg/kg to 0.10 mg/kg. The enantiomers of ibutilide fumarate have pharmacokinetic properties similar to each other and to ibutilide fumarate.
Metabolism / Metabolites
Primarily hepatic. Eight metabolites of ibutilide were detected in metabolic profiling of urine. These metabolites are thought to be formed primarily by o-oxidation followed by sequential b-oxidation of the heptyl side chain of ibutilide. Of the eight metabolites, only the o-hydroxy metabolite possesses class III electrophysiologic properties similar to that of ibutilide in an in vitro isolated rabbit myocardium model.
Eight metabolites of ibutilide were detected in metabolic profiling of urine. These metabolites are thought to be formed primarily by omega-oxidation followed by sequential beta-oxidation of the heptyl side chain of ibutilide. Of the eight metabolites, only the omega-hydroxy metabolite possesses class III electrophysiologic properties similar to that of ibutilide in an in vitro isolated rabbit myocardium model. The plasma concentrations of this active metabolite, however, are less than 10% of that of ibutilide.
Biological Half-Life
6 hours (ranges from 2-12 hours)
The elimination half-life averages about 6 hours (range from 2 to 12 hours).
Sixteen adult patients with atrial fibrillation or atrial flutter requiring conversion to normal sinus rhythm: six patients who had New York Heart Association (NYHA) class II or III heart failure due to left ventricular dysfunction (mean +/- SD left ventricular ejection fraction (LVEF) 30 +/- 9%); 10 patients who did not have left ventricular dysfunction (mean +/- SD LVEF 54 +/- 5% in six of these 10 patients) served as controls. All patients received a single dose of ibutilide 1.0 mg administered intravenously over 10 minutes. ... No significant differences were noted between the heart failure and normal left ventricular function groups in the following parameters: ... half-life (12.5 +/- 10.7 vs 12.4 +/- 8.6 hrs, p=0.99).
Toxicity/Toxicokinetics
Protein Binding
40%
Interactions
Supraventricular arrhythmias may mask the cardiotoxicity associated with excessive digoxin levels. Therefore, it is advisable to be particularly cautious in patients whose plasma digoxin levels are above or suspected to be above the usual therapeutic range. Coadministration of digoxin did not have effects on either the safety or efficacy of ibutilide in the clinical trials.
The potential for proarrhythmia may increase with the administration of ibutilide fumarate injection to patients who are being treated with drugs that prolong the QT interval, such as phenothiazines, tricyclic antidepressants, tetracyclic antidepressants, and certain antihistamine drugs (H1 receptor antagonists).
Class Ia antiarrhythmic drugs (Vaughan Williams Classification), such as disopyramide, quinidine, and procainamide, and other class III drugs, such as amiodarone and sotalol, should not be given concomitantly with ibutilide fumarate injection or within 4 hours postinfusion because of their potential to prolong refractoriness. In the clinical trials, class I or other class III antiarrhythmic agents were withheld for at least 5 half-lives prior to ibutilide infusion and for 4 hours after dosing, but thereafter were allowed at the physician's discretion.
Ibutilide is a class III antiarrhythmic agent indicated for cardioversion of atrial fibrillation and atrial flutter to sinus rhythm (SR). The most serious complication of ibutilide is torsades de pointes (TdP). Magnesium has been successfully used for the treatment of TdP, but its use as a prophylactic agent for this arrhythmia has not yet been established. The present study investigated whether high dose of magnesium would increase the safety and efficacy of ibutilide administration. A total of 476 patients with atrial fibrillation or atrial flutter who were candidates for conversion to SR were divided into 2 groups. Group A consisted of 229 patients who received ibutilide to convert atrial fibrillation or atrial flutter to SR. Group B consisted of 247 patients who received an intravenous infusion of 5 g of magnesium sulfate for 1 hour followed by the administration of ibutilide. Then, another 5 g of magnesium were infused for 2 additional hours. Of the patients in groups A and B, 154 (67.3%) and 189 (76.5%), respectively, were converted to SR (p = 0.033). Ventricular arrhythmias (sustained, nonsustained ventricular tachycardia, and TdP) occurred significantly more often in group A than in group B (7.4% vs 1.2%, respectively, p = 0.002). TdP developed in 8 patients (3.5%) in group A and in none (0%) in group B (p = 0.009). The administration of magnesium (despite the high doses used) was well tolerated. In conclusion, the administration of high doses of magnesium probably makes ibutilide a much safer agent, and magnesium increased the conversion efficacy of ibutilide.
References
[1]. Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Concentration-, time-, voltage-, and use-dependent effects. Circulation. 1995 Mar 15;91(6):1799-806.
[2]. B F McBride, et al. Influence of the G2677T/C3435T haplotype of MDR1 on P-glycoprotein trafficking and Ibutilide-induced block of HERG. Pharmacogenomics J. 2009 Jun;9(3):194-201.
[3]. S S Chugh, et al. Altered response to Ibutilide in a heart failure model. Cardiovasc Res. 2001 Jan;49(1):94-102.
Additional Infomation
Therapeutic Uses
Anti-Arrhythmia Agents
Ibutilide fumarate injection is indicated for the rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm. Patients with atrial arrhythmias of longer duration are less likely to respond to ibutilide fumarate injection. The effectiveness of ibutilide has not been determined in patients with arrhythmias of more than 90 days in duration. /Included in US product label/
Ibutilide is administered as a rapid infusion (1 mg over 10 minutes) for the immediate conversion of atrial fibrillation or flutter to sinus rhythm. The drug's efficacy rate is higher in patients with atrial flutter (50-70%) than in those with atrial fibrillation (30-50%). In atrial fibrillation, the conversion rate is lower in those in whom the arrhythmia has been present for weeks or months compared with those in whom it has been present for days.
Drug Warnings
/BOXED WARNING/ LIFE-THREATENING ARRHYTHMIAS-APPROPRIATE TREATMENT ENVIRONMENT. Covert can cause potentially fatal arrhythmias, particularly sustained polymorphic ventricular tachycardia, usually in association with QT prolongation (torsades de pointes), but sometimes without documented QT prolongation. In registration studies, these arrhythmias, which require cardioversion, occurred in 1.7% of treated patients during, or within a number of hours of, use of Covert. These arrhythmias can be reversed if treated promptly. It is essential that Covert be administered in a setting of continuous ECG monitoring and by personnel trained in identification and treatment of acute ventricular arrhythmias, particularly polymorphic ventricular tachycardia. Patients with atrial fibrillation of more than 2 to 3 days' duration must be adequately anticoagulated, generally for at least 2 weeks. CHOICE OF PATIENTS. Patients with chronic atrial fibrillation have a strong tendency to revert after conversion to sinus rhythm and treatments to maintain sinus rhythm carry risks. Patients to be treated with Covert, therefore, should be carefully selected such that the expected benefits of maintaining sinus rhythm outweigh the immediate risks of Covert, and the risks of maintenance therapy, and are likely to offer an advantage compared with alternative management.
Patients with chronic atrial fibrillation have a strong tendency to revert after conversion to sinus rhythm and treatments to maintain sinus rhythm carry risks. Patients to be treated with ibutilide fumarate injection, therefore, should be carefully selected such that the expected benefits of maintaining sinus rhythm outweigh the immediate risks of ibutilide fumarate injection, and the risks of maintenance therapy, and are likely to offer an advantage compared with alternative management.
Clinical trials with ibutilide fumarate injection in patients with atrial fibrillation and atrial flutter did not include anyone under the age of 18. Safety and effectiveness of ibutilide in pediatric patients has not been established.
FDA Pregnancy Risk Category: C /RISK CANNOT BE RULED OUT. Adequate, well controlled human studies are lacking, and animal studies have shown risk to the fetus or are lacking as well. There is a chance of fetal harm if the drug is given during pregnancy; but the potential benefits may outweigh the potential risk./
For more Drug Warnings (Complete) data for Ibutilide (11 total), please visit the HSDB record page.
Pharmacodynamics
Ibutilide prolongs the action potential duration and increases both atrial and ventricular refractoriness in vivo, i.e., class III electrophysiologic effects. Voltage clamp studies indicate that ibutilide, at nanomolar concentrations, delays repolarization by activation of a slow, inward current (predominantly sodium), rather than by blocking outward potassium currents, which is the mechanism by which most other class III antiarrhythmics act.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H36N2O3S
Molecular Weight
384.57644
Exact Mass
384.245
CAS #
122647-31-8
Related CAS #
Ibutilide fumarate;122647-32-9
PubChem CID
60753
Appearance
Colorless to light yellow oil
Density
1.099g/cm3
Boiling Point
522.4ºC at 760mmHg
Flash Point
269.7ºC
Vapour Pressure
9.71E-12mmHg at 25°C
LogP
5.317
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
14
Heavy Atom Count
26
Complexity
443
Defined Atom Stereocenter Count
0
InChi Key
ALOBUEHUHMBRLE-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H36N2O3S/c1-4-6-7-8-9-16-22(5-2)17-10-11-20(23)18-12-14-19(15-13-18)21-26(3,24)25/h12-15,20-21,23H,4-11,16-17H2,1-3H3
Chemical Name
N-[4-[4-[ethyl(heptyl)amino]-1-hydroxybutyl]phenyl]methanesulfonamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6002 mL 13.0012 mL 26.0024 mL
5 mM 0.5200 mL 2.6002 mL 5.2005 mL
10 mM 0.2600 mL 1.3001 mL 2.6002 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us