HMN-176

Alias: HMN176; HMN-176; HMN 176
Cat No.:V22224 Purity: ≥98%
HMN-176 is an analogue of diphenylethylene that can inhibit mitosis and interfere with plk1, but has little effect on tubulin polymerization.
HMN-176 Chemical Structure CAS No.: 173529-10-7
Product category: PLK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
HMN-176 is an analogue of diphenylethylene that can inhibit mitosis and interfere with plk1, but has little effect on tubulin polymerization.
Biological Activity I Assay Protocols (From Reference)
Targets
PLK1
ln Vitro
HMN-176 (2.5 μM) greatly increases the duration of mitosis in hTERT-RPE1 and CFPAC-1 Cell lines. Microtubule polymerization effects do not seem to be connected to spindle morphology effects of HMN-176. Aster formation is inhibited in a concentration-dependent manner by HMN-176 at 2.5, 0.25, and 0.025 μM[1]. Samples of ovarian, breast, and nonsmall-cell lung cancers show the greatest activity when exposed to HMN-176 (0.1, 1.0, or 10.0 µg/mL), which has inhibitory effects on a variety of tumors. 67% of non-small cell lung (4/6), 57% of breast (5/8), and 4/7 of ovarian tumor specimens treated with 10.0 µg/mL exhibit activity towards HMN-176[2]. The mean IC50 value of HMN-176 is 118 nM, indicating strong cytotoxicity. Regarding tumors with diverse features originating from different organs, HMN-176 exhibits comparable cytotoxicity[3]. Suppression of MDR1 mRNA expression by 56% occurs upon treatment with 3 μM HMN-176. On the residual promoter activity, HMN-176 has no discernible effect[4].
ln Vivo
Plasma levels of HMN-176 peak at 2 hours and then progressively decline after p.o. of HMN-214 to male rats, but no prodrug is found in the plasma[3].
Cell Assay
The test cells are seeded at a density of 3 ×103–1×104 cells/well into a 96-well microplate. The following day, medications are added, and the plate is kept in a humidified incubator with 5% CO2 and 95% air for 72 hours at 37 °C. The Scansoft 96 software calculates the concentration needed to produce 50% inhibition of growth (IC50), and the MTT assay is used to measure the amount of growth inhibition. The reference agents and HMN-176 IC50 values are shown. In summary, each compound's mean IC50 value across all tested cell lines is determined, and a bar projecting to the right or left of the mean indicates the difference between the IC50 values for each individual cell line and the mean IC50 value (log10). (IC50 value for drug-resistant cell line) / (IC50 for parent cell line) yields the resistance index.
Animal Protocol
Male SD rats are given injections of 14C-HMN-214 and 14C-HMN-176 at doses of 33 (or 30 mg/kg of HMN-176) and 30 mg/kg, respectively. At predetermined times, blood samples are collected, and a liquid scintillation counter is used to measure the radioactivity levels in the plasma. Additionally, male rats are given unlabeled HMN-214 (33 mg/kg), and high performance liquid chromatography is used to measure the amounts of HMN-214 and HMN-176 in the plasma.
References

[1]. The small organic compound HMN-176 delays satisfaction of the spindle assembly checkpoint by inhibiting centrosome-dependent microtubule nucleation. Mol Cancer Ther. 2009 Mar;8(3):592-601.

[2]. Investigation of HMN-176 anticancer activity in human tumor specimens in vitro and the effects of HMN-176 on differential gene expression. Invest New Drugs. 2005 Jan;23(1):3-9.

[3]. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest New Drugs. 2003 Nov;21(4):387-99.

[4]. HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. Cancer Res. 2003 Oct 15;63(20):6942-7.

[5]. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin Cancer Res. 2006 Sep 1;12(17):5182-9.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H18N2O4S
Molecular Weight
382.432923793793
Exact Mass
382.10
Elemental Analysis
C, 62.81; H, 4.74; N, 7.33; O, 16.73; S, 8.38
CAS #
173529-10-7
Related CAS #
173529-10-7
Appearance
Solid powder
SMILES
COC1=CC=C(C=C1)S(=O)(=O)/N=C/2\C=CC=C\C2=C/C=C3C=CN(C=C3)O
InChi Key
MYEJOKLXXLVMPR-STNHEDLKSA-N
InChi Code
InChI=1S/C20H18N2O4S/c1-26-18-8-10-19(11-9-18)27(24,25)21-20-5-3-2-4-17(20)7-6-16-12-14-22(23)15-13-16/h2-15,23H,1H3/b17-7+,21-20+
Chemical Name
(NE)-N-[(6E)-6-[2-(1-hydroxypyridin-4-ylidene)ethylidene]cyclohexa-2,4-dien-1-ylidene]-4-methoxybenzenesulfonamide
Synonyms
HMN176; HMN-176; HMN 176
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ≥ 30 mg/mL (~78.5 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6149 mL 13.0743 mL 26.1486 mL
5 mM 0.5230 mL 2.6149 mL 5.2297 mL
10 mM 0.2615 mL 1.3074 mL 2.6149 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Chemical structures of HMN-214, HMN-176, HMN-182, and HMN-6001. Clin Cancer Res . 2006 Sep 1;12(17):5182-9.
  • Plasma concentration profile of HMN-176 on days 1 and 21. Clin Cancer Res . 2006 Sep 1;12(17):5182-9.
  • Effect of HMN-176 on spindle morphology of cultured human cells. Mol Cancer Ther . 2009 Mar;8(3):592-601
  • Effect of HMN-176 on in vivo spindle assembly in Spisula oocytes. Mol Cancer Ther . 2009 Mar;8(3):592-601
Contact Us Back to top