Histatin 5

Cat No.:V33743 Purity: ≥98%
Histatin 5 is a novel and potent bioactive peptide compound that inhibits theactivity of MMP-2 and MMP-9 (host matrix metalloproteinases) with IC50s of 0.57 and 0.25 μM, respectively.
Histatin 5 Chemical Structure CAS No.: 115966-68-2
Product category: MMP
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
15mg
25mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Histatin 5 is a novel and potent bioactive peptide compound that inhibits the activity of MMP-2 and MMP-9 (host matrix metalloproteinases ) with IC50s of 0.57 and 0.25 μM, respectively. Histatin 5 is a member of a family of low-molecular-weight salivary proteins secreted by parotid, submandibular, and sublingual glands.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Histatin 5 belongs to a family of low-molecular-weight salivary proteins that are released by sublingual, parotid, and submandibular glands. Histatin 5 inhibits the host matrix metalloproteinases MMP-2 and MMP-9 with IC50s of 0.57 and 0.25 μM, respectively, using biotinylated gelatin as a substrate. Three peptides with distinct Histatin 5 sections are created and tested as MMP-9 inhibitors in an effort to identify the domain causing this inhibition. The inhibitory activities of peptides including residues 1 through 14 and 4 through 15 of Histatin 5 are significantly lower (IC50, 21.4 and 20.5 μM, respectively), whereas a peptide containing residues 9 through 22 had the same activity as Histatin 5 against MMP-9. Histatin 5 is a competitive inhibitor that only affects the Km with a Ki of 15 μM, according to kinetic studies of the inhibition of the Arg-gingipain[1]. The mitochondrial respiration process is inhibited by histatin 5.Candida albicans cells absorb the human salivary antifungal peptide Histatin 5 and bind intracellularly to mitochondria. In a dose- and time-dependent manner, histatin 5 5 suppresses both the respiration of whole blastoconidia and the respiration of isolated C. albicans mitochondria. State 2 respiration is inhibited by histatin 5 at 33 μM [2].
Enzyme Assay
MMP-2 and MMP-9 are tested using biotinylated gelatin-coated microtiter plates as a substrate. In this assay, estimation of enzyme activity is based on the loss of bound biotin resulting from proteolytic activity against the gelatin-biotin complex adsorbed to the wells of microtiter plates. A stock solution of 5.4 μM MMP-9 is diluted to 10.8 nM in enzyme buffer consisting of 50 mM Tris-HCl (pH 7.5) containing 0.5 M NaCl and 5 mM CaCl2. The diluted enzyme is activated by adding 1 mM 4-aminophenylmercuric acetate and is further incubated at room temperature for 30 min. Histatin 5 at concentrations ranging from 0.005 to 100 μM is incubated with activated enzyme for 10 min before being added to the microtiter plates. The same procedure is carried out with peptide 1, peptide 2, and peptide 3. As a positive control, EDTA is used at 25 mM. After incubation of the appropriate inhibitor with the enzyme, the wells of a microtiter plate are filled with 50 μL of this mixture and the plate is incubated at 37°C for 2 h. Wells containing enzyme without inhibitor are used to determine maximal activity (100%). Wells containing substrate and buffer alone are used as controls, representing no activity (0%). To stop the reactions, the plate is washed three times with 200 μL of PBS containing 1% Tween 20. Subsequently, 50 μL of streptavidin-alkaline phosphatase (1:2, 500 dilution in water) is added to each well, and the plate is incubated for 15 min at 37°C. The plate is then washed four times with 200 μL of PBS-Tween, and 200 μL of pNPP dissolved in diethanolamine buffer (1 mg of pNPP per mL of buffer) is added for 20 min at 37°C. The absorbance is recorded at 405 nm using a microtiter plate reader[1].
References
[1]. Gusman H, et al. Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontaldisease. Infect Immun. 2001 Mar;69(3):1402-8.
[2]. Helmerhorst EJ, et al. The human salivary peptide histatin 5 exerts its antifungal activity through the formation ofreactive oxygen species. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14637-42.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C135H196F3N51O35
Molecular Weight
3150.3167
CAS #
115966-68-2
Related CAS #
Histatin 5 TFA
SMILES
FC(C(=O)O[H])(F)F.O=C([C@]([H])(C([H])([H])C([H])([H])C([H])([H])N([H])/C(=N\[H])/N([H])[H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H])N([H])C([C@]([H])(C([H])([H])C1C([H])=C([H])C(=C([H])C=1[H])O[H])N([H])C(C([H])([H])N([H])C([C@]([H])(C([H])([H])C1=C([H])N([H])C([H])=N1)N([H])C([C@]([H])(C([H])([H])C1=C([H])N([H])C([H])=N1)N([H])C([C@]([H])(C([H])([H])C([H])([H])C([H])([H])N([H])/C(=N/[H])/N([H])[H])N([H])C([C@]([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H])N([H])C([C@]([H])(C([H])([H])[H])N([H])C([C@]([H])(C([H])([H])C1=C([H])N([H])C([H])=N1)N([H])C([C@]([H])(C([H])([H])O[H])N([H])C([C@]([H])(C([H])([H])C(=O)O[H])N([H])[H])=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])[C@@]([H])(C([H])([H])O[H])C(N([H])[C@]([H])(C(N([H])[C@]([H])(C(N([H])C([H])([H])C(N([H])[C@]([H])(C(=O)O[H])C([H])([H])C1C([H])=C([H])C(=C([H])C=1[H])O[H])=O)=O)C([H])([H])C([H])([H])C([H])([H])N([H])/C(=N/[H])/N([H])[H])=O)C([H])([H])C1=C([H])N([H])C([H])=N1)=O)=O)C([H])([H])C1=C([H])N([H])C([H])=N1)=O)C([H])([H])C1=C([H])N([H])C([H])=N1)=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H])=O)C([H])([H])C([H])([H])C(=O)O[H])=O)C([H])([H])C1=C([H])N([H])C([H])=N1)=O)C([H])([H])C1C([H])=C([H])C([H])=C([H])C=1[H])=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H]
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.3174 mL 1.5871 mL 3.1743 mL
5 mM 0.0635 mL 0.3174 mL 0.6349 mL
10 mM 0.0317 mL 0.1587 mL 0.3174 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top