Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Targets |
Human dopamine D3 Receptor ( Ki = 0.4 nM )
|
---|---|
ln Vitro |
GR 103691 demonstrates a strong affinity for α-1 adrenoceptors (Ki of 12.6 nM) and serotonin1A (5-HT1A) receptors (Ki of 5.8 nM)[1].
The benzofurane (+)-S 14297, the benzamide nafadotride, the aminoindane U 99194 and the arylpiperazine GR-10369 have been proposed as "selective" antagonists at dopamine D3 vs. D2 receptors. Herein, we compared their in vitro affinities and in vivo actions to those of the aminotetralin D3 antagonists (+)-AJ 76 and (+)-UH 232. Affinities at recombinant, human (h)D3 and/or hD2 sites were determined by employing the mixed D2/D3 antagonist [125I]-iodosulpride and the preferential D3 ligands [3H]-(+)-PD 128, 907 and [3H]-(+)-S 14297. [3H]-(+)-PD 128,907, [3H]-(+)-S 14297 and [125I]-iodosulpride yielded an essentially identical pattern of displacement at D3 sites, which suggests that they recognize the same population of receptors. The rank order of potency (Ki values in nM vs. [3H]-(+)-PD 128,907) was GR-10369 (0.4) approximately nafadotride (0.5) > haloperidol (2) approximately (+)-UH 232 (3) approximately (+)-S 14297 (5) > (+)-AJ 76 (26) > U 99194 (160). The rank order of preference (Ki ratio, D2:D3) for D3 receptors (labeled by [3H]-PD 128,907) vs. D2 sites (labeled by [125I]-iodosulpride) was (+)-S 14297 (61) approximately GR 103,691 (60) > U 99194 (14) > nafadotride (9) approximately (+)-UH 232 (8) approximately (+)-AJ 76 (6) > haloperidol (0.2). (+)-S 14297 and GR 103,691 also showed greater than 100-fold selectivity at dopamine hD3 vs. hD4 and hD1 sites. However, GR 103,691 showed marked affinity for serotonin1A receptors (5.8 nM) and alpha-1 adrenoceptors (12.6 nM) [1]. |
ln Vivo |
In vivo, all antagonists except GR-10369prevented the induction of hypothermia by (+)-PD 128,907 (0.63 mg/kg s.c.) and a further preferential D3 agonist, (+)-7-OH-DPAT (0.16 mg/kg s.c.). On the other hand, haloperidol, (+)-AJ 76, (+)-UH 232 and nafadotride all induced catalepsy in rats, whereas (+)-S 14297, U 99194 and GR-10369 were inactive. Haloperidol, (+)-AJ 76, (+)-UH 232, nafadotride and (weakly) U 99194 also enhanced prolactin secretion and striatal dopamine synthesis, whereas (+)-S 14297 and GR 103,691 were inactive. However, despite its high affinity at 5-HT1A receptors and alpha-1 adrenoceptors, both of which are present on raphe-localized serotonergic neurons, GR 103,691 (0.5 mg/kg i.v.) failed to influence their basal firing rate or the inhibition of their electrical activity by the 5-HT1A agonist (+/-)-8-OH-DPAT (0.005 mg/kg i.v.), a result that casts doubt on its activity in vivo. In conclusion, both (+)-S 14297 and GR 103,691 are markedly selective ligands that permit the characterization of actions at hD3 vs. hD2 receptors in vitro, but (+)-S 14297 appears to be of greater utility for the evaluation of their functional significance in vivo. Nevertheless, to develop a better understanding of the respective roles of dopamine D3 and D2 receptors, we need additional, chemically diverse antagonists of improved potency and selectivity [1].
|
References | |
Additional Infomation |
4-(4-acetylphenyl)-N-[4-[4-(2-methoxyphenyl)-1-piperazinyl]butyl]benzamide is an aromatic ketone.
Dopamine Antagonists: Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME. |
Molecular Formula |
C30H35N3O3
|
---|---|
Molecular Weight |
485.63
|
Exact Mass |
485.267
|
Elemental Analysis |
C, 74.20; H, 7.26; N, 8.65; O, 9.88
|
CAS # |
162408-66-4
|
PubChem CID |
4302960
|
Appearance |
White to off-white Solid powder
|
Density |
1.1±0.1 g/cm3
|
Boiling Point |
688.7±55.0 °C at 760 mmHg
|
Flash Point |
370.3±31.5 °C
|
Vapour Pressure |
0.0±2.1 mmHg at 25°C
|
Index of Refraction |
1.582
|
LogP |
4.47
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
10
|
Heavy Atom Count |
36
|
Complexity |
677
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C(C1C=CC(C2C=CC(C(NCCCCN3CCN(C4C=CC=CC=4OC)CC3)=O)=CC=2)=CC=1)(=O)C
|
InChi Key |
JARNORYOPMINDY-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C30H35N3O3/c1-23(34)24-9-11-25(12-10-24)26-13-15-27(16-14-26)30(35)31-17-5-6-18-32-19-21-33(22-20-32)28-7-3-4-8-29(28)36-2/h3-4,7-16H,5-6,17-22H2,1-2H3,(H,31,35)
|
Chemical Name |
4-(4-acetylphenyl)-N-[4-[4-(2-methoxyphenyl)piperazin-1-yl]butyl]benzamide
|
Synonyms |
GR 103691; GR-103691; GR 103,691; GR-103,691; UNII-0Y0CM1A77L; DTXSID6042602; GR 103,691; DTXCID4022602; 162408-66-4; 4'-Acetyl-N-[4-[4-(2-methoxyphenyl)-1-piperazinyl]butyl]-[1,1'-biphenyl]-4-carboxamide; GR103691
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: ~5 mg/mL (~10.30 mM (~<80°C))
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0592 mL | 10.2959 mL | 20.5918 mL | |
5 mM | 0.4118 mL | 2.0592 mL | 4.1184 mL | |
10 mM | 0.2059 mL | 1.0296 mL | 2.0592 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.