Ellipticine

Alias: Elliptecine; ellipticine; Elliptisine; CCG-36483; CCG36483; CCG 36483; NSC 71795; NSC71795; NSC-71795; DB-052047; K00071; LP00531; LS-133282; TCMDC-125546; VZ29809
Cat No.:V3828 Purity: ≥98%
Ellipticine, originally identified as a natural product, is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP).
Ellipticine Chemical Structure CAS No.: 519-23-3
Product category: Topoisomerase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Ellipticine:

  • Ellipticine HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Ellipticine, originally identified as a natural product, is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). With several modes of action, including DNA intercalation and inhibition of DNA topoisomerase II, ellipticine is a highly effective antitumor agent. In addition to its pharmacological and genotoxic effects, ellipticine can also be used as an inducer or inhibitor of biotransformation enzymes, which can alter its own metabolism. Cell growth and proliferation were inhibited when ellipticine was administered to all tested cells. This effect was linked, in MCF-7, HL-60, CCRF-CEM, UKF-NB-3, UKF-NB-4, and U87MG cells, to the formation of two covalent ellipticine-derived DNA adducts, which were identical to those formed by 13-hydroxy- and 12-hydroxyellipticine, the ellipticine metabolites generated by CYP and peroxidase enzymes, but not in neuroblastoma UKF-NB-3 cells. Consequently, the majority of cancer cell lines examined in this comparative study may be more sensitive to ellipticine treatment due to DNA adduct formation, while other ellipticine action mechanisms may also play a role in the drug's cytotoxicity against neuroblastoma UKF-NB-3 cells.

Biological Activity I Assay Protocols (From Reference)
Targets
Topoisomerase II
ln Vitro
Ellipticine (NSC 71795) is a strong anti-tumor agent that acts through multiple modes of action. Ellipticine (NSC 71795) is thought to exert its antitumor, mutagenic, and cytotoxic properties through the mechanisms of intercalation into DNA and inhibition of DNA topoisomerase II activity. Ellipticine (NSC 71795) also acts through oxidizing DNA with cytochromes P450 (CYP) and peroxidases, which forms covalent DNA adducts[1]. Ellipticine (NSC 71795) has pharmacological and genotoxic effects because it can also modulate its own metabolism by acting as an inducer or inhibitor of biotransformation enzymes. The application of Ellipticine (NSC 71795) to cells inhibits their growth and proliferation. Two covalent DNA adducts derived from ellipticine (NSC 71795) are linked to this effect[2].
ln Vivo
Ellipticine (NSC 71795) treatment causes the DNA of mammary adenocarcinoma and several healthy organs (liver, kidney, lung, spleen, breast, heart, and brain) to produce adducts of Ellipticine (NSC 71795). These adenocarcinomas produce nearly twice as much Ellipticine (NSC 71795)-derived DNA adducts than do normal, healthy mammary tissue. Cytochrome b5 may influence CYP-mediated bioactivation and detoxification of ellipticine (NSC 71795), as evidenced by the induced expression of cytochrome b5 protein in the liver of rats treated with the drug[3].
Enzyme Assay
Ellipticine is a strong antitumor agent that acts through multiple modes of action. The mechanisms underlying the cytotoxic, mutagenic, and antitumor properties of ellipticine are proposed to involve DNA intercalation and inhibition of DNA topoisomerase II activity. The oxidation of DNA with cytochromes P450 (CYP) and peroxidases results in the formation of covalent DNA adducts, which is another way that ellipticine acts[1]. Ellipticine's pharmacological and genotoxic effects result from its ability to modulate its own metabolism through the inhibition or induction of biotransformation enzymes. The application of ellipticine to cells inhibits their growth and proliferation. Two covalent DNA adducts derived from ellipticines are linked to this effect.
Cell Assay
The MTT test is used to evaluate the cytotoxicity of ellipticine (NSC 71795). To get final concentrations of 0, 0.1, 1, 5, or 10 μM, ellipticine (NSC 71795) is diluted in culture medium after being dissolved in DMSO (1 mM). In a 96-well microplate, 1×104 cells are seeded per well for exponential growth. Following four hours of incubation, the MTT solution is added, and the cells are lysed in 50% N,N-dimethylformamide with 20% sodium dodecyl sulfate (SDS) at a pH of 4.5. At 570 nm, the absorbance is measured. As a background, the mean absorbance of the medium controls is subtracted. The values of treated cells are computed as a percentage of control, with the viability of control cells being assumed to be 100%. The dose-log response curves are linearly regressed to determine the IC50 values[2].
Animal Protocol


References

[1]. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006 Jul;150(1):13-23.

[2]. Ellipticine cytotoxicity to cancer cell lines - a comparative study. Interdiscip Toxicol. 2011 Jun;4(2):98-105.

[3]. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN?) mice and pure enzymes. Int J Mol Sci. 2014 Dec 25;16(1):284-306.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H14N2
Molecular Weight
246.31
Exact Mass
246.12
Elemental Analysis
C, 82.90; H, 5.73; N, 11.37
CAS #
519-23-3
Related CAS #
Ellipticine hydrochloride;5081-48-1
Appearance
Yellow solid powder
SMILES
CC1=C2C=CN=CC2=C(C3=C1NC4=CC=CC=C43)C
InChi Key
CTSPAMFJBXKSOY-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H14N2/c1-10-14-9-18-8-7-12(14)11(2)17-16(10)13-5-3-4-6-15(13)19-17/h3-9,19H,1-2H3
Chemical Name
5,11-dimethyl-6H-pyrido[4,3-b]carbazole
Synonyms
Elliptecine; ellipticine; Elliptisine; CCG-36483; CCG36483; CCG 36483; NSC 71795; NSC71795; NSC-71795; DB-052047; K00071; LP00531; LS-133282; TCMDC-125546; VZ29809
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~5.8 mg/mL
Water: < 1mg/mL
Ethanol: < 1mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.0599 mL 20.2996 mL 40.5992 mL
5 mM 0.8120 mL 4.0599 mL 8.1198 mL
10 mM 0.4060 mL 2.0300 mL 4.0599 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Ellipticine

    Total levels of ellipticine-DNA adducts determined and quantified by32P-postlabelling analysis of DNA isolated from organs of HRN and WT mice treatedi.p.with 10 mg ellipticine/kg body weight.2014 Dec 25;16(1):284-306.

    Ellipticine

    Autoradiographic profiles of ellipticine-derived DNA adducts analyzed with the32P-postlabeling assay.2011 Jun;4(2):98-105.

  • Ellipticine

    DNA adduct formation by ellipticine activated with microsomes isolated from livers of untreated Hepatic Cytochrome P450 Reductase Null (HRN) or wild-type (WT) mice (A) and from mice treated with BaP (B) as determined by32P-postlabeling.2014 Dec 25;16(1):284-306.

  • Ellipticine

    Autoradiographs of thin layer chromatography (TLC) maps of32P-labeled digests of calf thymus DNA reacted with ellipticine activated by hepatic microsomes from wild-type (WT) mice


    Ellipticine

    Levels of ellipticine metabolites formed by hepatic microsomes (0.2 mg protein) of Hepatic Cytochrome P450 Reductase Null (HRN) and wild-type (WT) mice from 10 μM ellipticine and by hepatic microsomes of HRN and WT mice pre-treated with BaP.2014 Dec 25;16(1):284-306.

Contact Us Back to top