Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Dxd, an exatecan analog, is a novel and potent DNA topoisomerase I inhibitor(IC50=0.31 μM) with anticancer activity, and is used as a conjugated drug of HER2-targeting ADC (DS-8201a).
Targets |
Topoisomerase I ( IC50 = 0.31 μM ); Camptothecins
|
---|---|
ln Vitro |
Dxd (Exatecan derivative for ADC) is a potent inhibitor of DNA topoisomerase I that is used as a conjugated drug with HER2-targeting ADC (DS-8201a), having an IC50 of 0.31 μM. With IC50s ranging from 1.43 nM to 4.07 nM, DXd is cytotoxic to human cancer cell lines of KPL-4, NCI-N87, SK-BR-3, and MDA-MB-468; however, control IgG-ADC, of which Dxd is the payload, exhibits no inhibition on the four cell lines (expressing HER2). With IC50 values of 26.8, 25.4, and 6.7 ng/mL, respectively, DS-8201a (the payload is Dxd) exhibits significant suppression on the HER2-positive KPL-4, NCI-N87, and SK-BR-3 cell lines, but no such inhibition is seen on MDA-MB-468 (IC50, >10,000 ng/mL)[1].
The structure of DS-8201a is shown in Fig. 1A. DS-8201a is a HER2-targeting ADC and is composed of an anti-HER2 antibody and a derivative of DX-8951 (DXd), a topoisomerase I inhibitor, which are bound together by a maleimide glycyn-glycyn-phenylalanyn-glycyn (GGFG) peptide linker. The linker-payload is conjugated with the antibody via the cysteine residues after the interchain disulfide bounds are reduced with a reducing agent, tris (2-carboxyethyl) phosphine hydrochloride (TCEP HCl). As the tetrapeptide is decomposed by lysosomal enzymes such as cathepsins B and L which are highly expressed in tumor cells (30–34), it is supposed that DS-8201a is cleaved by lysosomal enzymes and releases DXd, which attacks target molecules specifically in tumor cells after it binds to HER2 receptors and is internalized in tumor cells. By using RPC, the DAR of DS-8201a was determined as approximately 8, which is the theoretical maximum drug loading number for conventional interchain cysteine conjugation. Therefore, homogeneous drug distribution was observed in the HIC chart (Fig. 1B). We confirmed that DXd is more potent in inhibitory activity in topoisomerase I than SN-38 as well as DX-8951f, as measured by a topoisomerase I–mediated DNA relaxation assay (Fig. 1C). Inhibition of cancer cell growth by DS-8201a [1] The inhibitory activity of DS-8201a against cancer cell growth was compared with an anti-HER2 Ab and control IgG–ADC–conjugated with DXdagainst various human cancer cell lines in vitro. HER2 expression on the cell surface of the cell lines KPL-4, NCI-N87, SK-BR-3, and MDA-MB-468 was firstly evaluated by flow cytometric analysis (Fig. 2A). The relative MFIs of KPL-4, NCI-N87, and SK-BR-3 were 95.7, 101.6, and 56.2, respectively, suggesting that HER2 is clearly expressed on the cell surfaces, whereas the relative MFI was 1.0 for MDA-MB-468, indicating no expression in the MDA-MB-468. Remarkable inhibitory activity to the cell growth was observed for DS-8201a against HER2-positive KPL-4, NCI-N87, and SK-BR-3, with the IC50 values of 26.8, 25.4, and 6.7 ng/mL, respectively, whereas no such inhibition was seen against MDA-MB-468 with the IC50 value of >10,000 ng/mL (Fig. 2B). Although the anti-HER2 Ab showed cell growth–inhibitory activity against NCI-N87 and SK-BR-3, these activities were rather weaker than that of the DS-8201a; the IC50 values of NCI-N87 and SK-BR-3 were 204.2 and 65.9 ng/mL, respectively (Fig. 2B). Also, control IgG-ADC did not show cell growth–inhibitory activities in any of the four cell lines (Fig. 2B), although all four cell lines were sensitive to the payload, DXd (IC50: 1.43 nmol/L–4.07 nmol/L). These results indicate that the cell growth–inhibitory activity of DS-8201a was remarkably enhanced by drug conjugation to the anti-HER2 Ab, and also that DS-8201a shows target-specific growth inhibition against HER2-positive cell lines. |
ln Vivo |
DS-8201a (DXdis the payload, 10 mg/kg, i.v.) demonstrates potent ntitumor activity in HER2-low-expressing ST565 and ST313 models with HER2 IHC 1+/FISH-negative expression as well as in HER2-positive models with KPL4, JIMT-1, and Capan-1[1].
Antitumor activity in vivo [1] The in vivo antitumor activity of DS-8201a was evaluated in a HER2-positive NCI-N87 xenograft model. DS-8201a induced tumor growth inhibition in a dose-dependent manner and tumor regression with a single dosing at more than 1 mg/kg without inducing any abnormalities in the general condition or body weight changes of the mice (Fig. 2C). In the same model, 4 mg/kg administration of anti-HER2 Ab partially inhibited the tumor growth, indicating 31% of tumor growth inhibition (TGI) compared with the control group on day 21 (Fig. 2D). On the other hand, DS-8201a clearly showed more potent antitumor efficacy, indicating 99% TGI at the same dose of 4 mg/kg, so that the enhancement of efficacy by drug conjugation was observed in vivo as well as in the in vitro models (Fig. 2D). Moreover, it is suggested that the in vivo efficacy of DS-8201a depends on its HER2 binding, as no inhibition of tumor growth was seen for the control-IgG ADC (Fig. 2D). Antitumor activity of DS-8201a in low HER2–expressing tumors [1] T-DM1 has been approved for HER2-positive metastatic breast cancer patients, defined as being HER2 IHC 3+ or IHC 2+/FISH–positive according to the current guidelines (45), and there are still clinical unmet needs in FISH-negative, HER2 1+ and 2+ populations for HER2-targeting therapies. Therefore, the antitumor activity of DS-8201a was evaluated in various mice xenograft models with different HER2 expression levels; KPL-4 (strong positive), JIMT-1 (moderate positive), Capan-1 (weak positive), and GCIY (negative) (Fig. 4A and B). Anti-HER2 ADC with the same drug-linker as DS-8201a and about half the DAR (DAR 3.4) was also evaluated to investigate the effect of DAR on antitumor activity. While T-DM1 was effective against only the KPL4 model, DS-8201a was effective against all HER2-positive models with KPL4, JIMT-1, and Capan-1. Both ADCs were not effective in the GCIY model. Anti-HER2 ADC (DAR 3.4) inhibited tumor growth against all HER2-positive models, and the efficacy was HER2 expression–dependent. A stronger efficacy was apparently observed for DS-8201a than anti-HER2 ADC (DAR 3.4) in the HER2 weak–positive Capan-1 model. These results suggest that the high DAR ADC, DS-8201a, enables the delivery of sufficient payload amounts into cancer cells, indicating cytotoxicity even with low HER2 levels. In case of HER2 strong –positive models, even a low DAR ADC is able to deliver a sufficient amount of payload for cell death. DS-8201a was effective in tumors with broader HER2 levels due to its high DAR, approximately 8. To confirm HER2-specificity of DS-8201a in a HER2 low–expressing model, a competitive inhibition study was performed in a HER2 low CFPAC-1 model (Fig. 4C). The efficacy of DS-8201a was cancelled by the prior treatment of the anti-HER2 Ab, and the control IgG-ADC did not inhibit tumor growth at a 3-fold higher dose than DS-8201a. From these results, the HER2 specificity of DS-8201a in a HER2 low–expressing model was confirmed. Comparison with T-DM1 in PDX models [1] In addition to the cell line–based xenograft models, several PDX evaluations were performed to assess clinical benefits more precisely. In a gastric cancer PDX model, NIBIO G016, DS-8201a demonstrated potent antitumor activity with tumor regression, but T-DM1 did not (Fig. 5A). As the HER2 status in this model was IHC 3+/FISH+, it is supposed that this difference in antitumor efficacy between DS-8201a and T-DM1 is based on the different sensitivity of payload due to dissimilar mechanism of action of each payload. In breast cancer PDX models, although both DS-8201a and T-DM1 were effective in the HER2 IHC 2+/FISH–positive ST225 model, complete tumor regression was observed on day 21 in 3 of 5 mice treated with DS-8201a, not T-DM1 (Fig. 5B). Furthermore, DS-8201a showed an antitumor activity in HER2 low–expressing ST565 and ST313 models with HER2 IHC 1+/FISH–negative expression (Fig. 5C and D), but T-DM1 did not. This result indicated a similar tendency to the cell line–based xenograft models such as Capan-1 and CFPAC-1 (Fig. 4B and C). Consequently, DS-8201a showed more potent antitumor activity than T-DM1 in all 4 of these models with several HER2 expression levels. These results suggest that DS-8201a has a differentiable potential from T-DM1, which shows effectiveness in T-DM1–insensitive and HER2 low–expressing tumors, resulting from the different mechanisms of action of the conjugated drug and the high DAR of DS-8201a. |
Enzyme Assay |
Topoisomerase I inhibitory assay [1]
SN-38, DX-8951f and DX-8951 derivative (DXd) were synthesized in-house. The inhibitory activities of SN-38, DX-8951f, and DXd against human topoisomerase I were evaluated by a topoisomerase I–mediated DNA relaxation assay according to a previous report. Briefly, recombinant human topoisomerase I was incubated with each drug for 5 minutes. Then, supercoiled DNA pBR322 was added and incubated at 25°C for 60 minutes. After the electrophoresis of the mixture on an agarose gel, the amount of the supercoiled DNA was measured with a CCD imager. In vitro stability of DS-8201a in plasma [1] The release rate of DXd from DS-8201a at the concentration of 10 μg/mL at 37°C up to 21 days was evaluated in mouse, rat, monkey, and human plasma. |
Cell Assay |
A 96-well plate is seeded with 1,000 cells per well. DXd is added following a night of incubation. A CellTiter-Glo Luminescent Cell Viability Assay is used to assess cell viability six days later. To identify HER2 expression in each cell line, FITC Mouse IgG1, κ Isotype Control, or anti-HER2/neu FITC are incubated on ice for 30 minutes. Following washing, FACSCalibur is used to analyze the labeled cells. The calculation of relative mean fluorescence intensity (rMFI) is done[1].
Cytotoxic assay [1] Cells were seeded to a 96-well plate at 1,000 cells per well. After overnight incubation, each diluted substance was added. Cell viability was evaluated after 6 days using a CellTiter-Glo Luminescent Cell Viability Assay according to the manufacturer's instructions. For the detection of HER2 expression in each cell line, cells were incubated on ice for 30 minutes with FITC Mouse IgG1, κ Isotype Control, or anti-HER2/neu FITC, the labeled cells were analyzed by FACSCalibur. Relative mean fluorescence intensity (rMFI) was calculated by the following equation: ELISA [1] For a binding assay, immunoplates were coated with 2.5 μg/mL His-tagged HER2-ECD protein in coating buffer and kept overnight at 4°C. After washing, the plates were blocked and each serially diluted substance was added to the wells. After incubation for 1.5 hours at 37°C, the plates were washed and incubated with HRP-conjugated anti-human IgG secondary antibody for 1 hour at 37°C. After washing, TMB solution was added and A450 in each well was measured with a microplate reader. For the detection of phosphorylated Akt (pAkt), SK-BR-3 cells were preincubated in a 96-well plate for 4 days and then incubated with each substance for 24 hours. After incubation, the cells were lysed and intercellular pAkt and total Akt were detected by using a PathScan Phospho-Akt1 (Ser473) Sandwich ELISA Kit and PathScan Total-Akt1 Sandwich ELISA Kit according to the manufacturer's instructions. Relative pAkt of each sample well was calculated by dividing treated normalized pAkt values by untreated normalized pAkt values. ADCC evaluation [1] Antibody-dependent cell-mediated cytotoxicity (ADCC) activities were evaluated using human peripheral blood mononuclear cells (PBMC) derived from a donor as effector cells and the SK-BR-3 cells as target cells. The effector cells (2 × 105 cells) and the 51Cr-labeled target cells (1 × 104 cells) were incubated with each substance, and the indicating effector:target (E:T) ratio was 20:1. After 4 hours of incubation, ADCC activity was measured by radioactivity in the culture supernatant. Immunoblotting [1] KPL-4 cells were treated with each substance. After 24, 48, or 72 hours, the cells were harvested and lysed with M-PER lysis buffer containing Halt Protease & Phosphatase Inhibitor Cocktail. The samples were loaded and separated by SDS-PAGE and blotted onto polyvinylidene difluoride membranes. The membranes were blocked, and probed overnight with anti-phospho-Chk1 (Ser345; 133D3) rabbit mAb, anti-Chk1 (2G1D5) mouse mAb, anti-cleaved PARP (Asp214) antibody, anti-β-actin (8H10D10) Mouse mAb, anti-phospho-Histone H2A.X (Ser139) antibody, and anti-Histone H2A.X antibody at 4°C. Then, the membranes were washed and incubated with fluorescence-labeled secondary antibodies for 10 minutes using SNAP intradermally. The fluorescence signal was detected using an Odyssey imaging system. |
Animal Protocol |
Mice: In brief, specific pathogen-free female nude mice are subcutaneously injected with each cell suspension or tumor fragment. Dosing begins on day 0 and the tumor-bearing mice are randomized into treatment and control groups based on the tumor volumes once the tumor has grown to an appropriate size. The mice receive intravenous injections of DS-8201a (1 or 10 mg/kg, i.v.; Dxd is the payload). One calculates tumor growth inhibition (TGI, %)[1].
Cell line and patient-derived xenograft studies [1] Detailed study procedures are written in the supplement. Briefly, each cell suspension or tumor fragment was inoculated subcutaneously into specific pathogen-free female nude mice. When the tumor had grown to an appropriate volume, the tumor-bearing mice were randomized into treatment and control groups based on the tumor volumes, and dosing was initiated on day 0. Each substance was administered intravenously to the mice. Tumor growth inhibition (TGI, %) was calculated according to the following equation: Pharmacokinetics of DS-8201a in cynomolgus monkeys [1] Concentrations of DS-8201a and the total antibody in plasma were determined with a validated ligand-binding assay; the lower limit of quantitation was 0.100 μg/mL. Concentrations of DXd in plasma were determined with a validated liquid chromatography-tandem mass spectrometry (LC/MS-MS) method; the lower limit of quantitation was 0.100 ng/mL. DS-8201a was intravenously administered at 3.0 mg/kg to male cynomolgus monkeys. Plasma concentrations of DS-8201a, total antibody, and DXd were measured up to 672 hours postdose. |
ADME/Pharmacokinetics |
Pharmacokinetics in cynomolgus monkeys[1]
The plasma DS-8201a concentrations decreased exponentially after a single intravenous administration of DS-8201a. The volume of distribution at steady state (Vss) of DS-8201a and total antibody was close to the plasma volume (data not shown). No clear difference was observed in the pharmacokinetic profile between DS-8201a and the total antibody, indicating that the peptide-linker of DS-8201a is stable in plasma even at DAR 8 (Fig. 2E). A low level of DXd was detected only at the limited time points (Fig. 2E). In vitro stability in plasma[1] The release rates of DXd from DS-8201a ranged from 1.2% to 3.9% on day 21 in mouse, rat, monkey, and human plasma (Fig. 2F), and these were comparable or rather lower than those of other ADCs, such as T-DM1, SGN-35 (Brentuximab vedotin), and inotuzumab ozogamicin (35–37). These results indicate that DS-8201a is stable in plasma. |
Toxicity/Toxicokinetics |
Safety profile of DS-8201a [1]
A repeated intravenous dosing (every 3 weeks for 3 doses) study was conducted in cynomolgus monkeys, the cross-reactive species for DS-8201a, and in rats (antigen–non-binding species; Table 1). In the rat study, no deaths or life-threatening toxicities were found at dose levels up to 197 mg/kg, the maximum dose. Therefore, the severely toxic dose of 10% in animals (STD10) was considered to be >197 mg/kg. In the monkey study, one female at the highest dose of 78.8 mg/kg was euthanized due to moribundity on day 26. The cause of the moribundity appeared to be the deteriorated condition of the animal, which included decreased body weight and food consumption, as well as bone marrow toxicity and intestinal toxicity. Microscopic findings in the intestines, bone marrow and lungs in the surviving monkeys are shown in Supplementary Table S1. Gastrointestinal toxicity and bone marrow toxicity are typical dose-limiting factors in the clinical use of topoisomerase I inhibitors. The effects of DS-8201a on the intestines were very slight, and severe changes were not pronounced in any animal at up to 78.8 mg/kg. The bone marrow toxicity was produced only at 78.8 mg/kg, and was accompanied by decreases in reticulocyte ratios. No abnormalities in leukocyte and erythrocyte counts were observed in monkeys at 10 and 30 mg/kg. The repeated dose of DS-8201a caused moderate pulmonary toxicity in monkeys at 78.8 mg/kg, and findings graded as slight or very slight after the 6-week recovery period at ≥30 mg/kg. On the basis of the mortality and severity of the findings above, the highest non-severely toxic dose (HNSTD) for monkeys was considered to be 30 mg/kg. DS-8201a was well tolerated at the doses up to 197 mg/kg in rats and 30 mg/kg in monkeys following the repeated administration corresponding to the clinical regimen, and the nonclinical safety profile was acceptable for entry into human trials. |
References | |
Additional Infomation |
Purpose: An anti-HER2 antibody-drug conjugate with a novel topoisomerase I inhibitor, DS-8201a, was generated as a new antitumor drug candidate, and its preclinical pharmacologic profile was assessed.
[1]
Experimental design: In vitro and in vivo pharmacologic activities of DS-8201a were evaluated and compared with T-DM1 in several HER2-positive cell lines and patient-derived xenograft (PDX) models. The mechanism of action for the efficacy was also evaluated. Pharmacokinetics in cynomolgus monkeys and the safety profiles in rats and cynomolgus monkeys were assessed. [1] Results: DS-8201a exhibited a HER2 expression-dependent cell growth-inhibitory activity and induced tumor regression with a single dosing at more than 1 mg/kg in a HER2-positive gastric cancer NCI-N87 model. Binding activity to HER2 and ADCC activity of DS-8201a were comparable with unconjugated anti-HER2 antibody. DS-8201a also showed an inhibitory activity to Akt phosphorylation. DS-8201a induced phosphorylation of Chk1 and Histone H2A.X, the markers of DNA damage. Pharmacokinetics and safety profiles of DS-8201a were favorable and the highest non-severely toxic dose was 30 mg/kg in cynomolgus monkeys, supporting DS-8201a as being well tolerated in humans. DS-8201a was effective in a T-DM1-insensitive PDX model with high HER2 expression. DS-8201a, but not T-DM1, demonstrated antitumor efficacy against several breast cancer PDX models with low HER2 expression. [1] Conclusions: DS-8201a exhibited a potent antitumor activity in a broad selection of HER2-positive models and favorable pharmacokinetics and safety profiles. The results demonstrate that DS-8201a will be a valuable therapy with a great potential to respond to T-DM1-insensitive HER2-positive cancers and low HER2-expressing cancers. Clin Cancer Res; 22(20); 5097-108. ©2016 AACR. Most of the ADCs currently in the market and in clinical development carry tubulin polymerization inhibitors such as T-DM1 and SGN-35 (Brentuximab vedotin; ref. 13). We synthesized a novel ADC with a topoisomerase I inhibitor, which has a different mechanism of action from tubulin polymerization inhibitors, and a novel self-immolative linker system using an aminomethylene (AM) moiety. Although other cleavable linker systems applied to SGN-35 (Brentuximab vedotin) and several ADCs release amino group–containing payloads, this AM self-immolative linker system is able to release DXd containing the hydroxyl group from DS-8201a. Moreover, this novel linker-payload system enables a reduction in the hydrophobicity of the ADC and helps increase its DAR. In the case of T-DM1, lysine conjugation and noncleavable systems are used, and it is quite a different system from DS-8201a. DS-8201a showed potent HER2-specific efficacy both in vitro and in vivo, and by drug conjugation maintained the functional effects of trastuzumab equal to those of T-DM1. Furthermore, the safety profiles of DS-8201a in rats and cynomolgus monkeys showed DS-8201a as being well tolerated.[1] |
Molecular Formula |
C26H24FN3O6
|
---|---|
Molecular Weight |
493.48367023468
|
Exact Mass |
493.16
|
Elemental Analysis |
C, 63.28; H, 4.90; F, 3.85; N, 8.52; O, 19.45
|
CAS # |
1599440-33-1
|
Related CAS # |
Exatecan;171335-80-1;Exatecan mesylate;169869-90-3;Dxd-d5;Exatecan mesylate dihydrate;197720-53-9
|
PubChem CID |
117888634
|
Appearance |
Off-white to light yellow solid powder
|
LogP |
0
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
36
|
Complexity |
1080
|
Defined Atom Stereocenter Count |
2
|
SMILES |
CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=C5[C@H](CCC6=C5C(=CC(=C6C)F)N=C4C3=C2)NC(=O)CO)O
|
InChi Key |
PLXLYXLUCNZSAA-QLXKLKPCSA-N
|
InChi Code |
InChI=1S/C26H24FN3O6/c1-3-26(35)15-6-19-23-13(8-30(19)24(33)14(15)10-36-25(26)34)22-17(28-20(32)9-31)5-4-12-11(2)16(27)7-18(29-23)21(12)22/h6-7,17,31,35H,3-5,8-10H2,1-2H3,(H,28,32)/t17-,26-/m0/s1
|
Chemical Name |
N-[(10S,23S)-10-ethyl-18-fluoro-10-hydroxy-19-methyl-5,9-dioxo-8-oxa-4,15-diazahexacyclo[14.7.1.02,14.04,13.06,11.020,24]tetracosa-1,6(11),12,14,16,18,20(24)-heptaen-23-yl]-2-hydroxyacetamide
|
Synonyms |
DX-8951 derivative; DX-8951; DX8951; 1599440-33-1; Dxd; N-[(10S,23S)-10-ethyl-18-fluoro-10-hydroxy-19-methyl-5,9-dioxo-8-oxa-4,15-diazahexacyclo[14.7.1.02,14.04,13.06,11.020,24]tetracosa-1,6(11),12,14,16,18,20(24)-heptaen-23-yl]-2-hydroxyacetamide; OQM5SD32BQ; N-((1S,9S)-9-ethyl-5-fluoro-9-hydroxy-4-methyl-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-1-yl)-2-hydroxyacetamide; N-((1S,9S)-9-Ethyl-5-fluoro-2,3,9,10,13,15-hexahydro-9-hydroxy-4-methyl-10,13-dioxo-1H,12H-benzo(de)pyrano(3',4':6,7)indolizino(1,2-b)quinolin-1-yl)-2-hydroxyacetamide; Acetamide, N-((1S,9S)-9-ethyl-5-fluoro-2,3,9,10,13,15-hexahydro-9-hydroxy-4-methyl-10,13-dioxo-1H,12H-benzo(de)pyrano(3',4':6,7)indolizino(1,2-b)quinolin-1-yl)-2-hydroxy-; Acetamide, N-[(1S,9S)-9-ethyl-5-fluoro-2,3,9,10,13,15-hexahydro-9-hydroxy-4-methyl-10,13-dioxo-1H,12H-benzo[de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-1-yl]-2-hydroxy-; Exatecan derivative; Trastuzumab Deruxtecan (DS-8201a).
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 8~40 mg/mL (16.2~81.1 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0264 mL | 10.1321 mL | 20.2642 mL | |
5 mM | 0.4053 mL | 2.0264 mL | 4.0528 mL | |
10 mM | 0.2026 mL | 1.0132 mL | 2.0264 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT05280470 | Active Recruiting |
Drug: Ifinatamab Deruxtecan (I-DXd) |
Extensive-stage Small- cell Lung Cancer |
Daiichi Sankyo, Inc. | June 17, 2022 | Phase 2 |
NCT05104866 | Active Recruiting |
Drug: Dato-DXd | Breast Cancer | AstraZeneca | October 18, 2021 | Phase 3 |
NCT04556773 | Active Recruiting |
Drug: Durvalumab Drug: Paclitaxel |
Metastatic Breast Cancer | AstraZeneca | December 17, 2020 | Phase 1 |
NCT04739761 | Active Recruiting |
Drug: Trastuzumab Deruxtecan | Breast Cancer | AstraZeneca | June 22, 2021 | Phase 3 |
NCT04526691 | Active Recruiting |
Drug: Cisplatin Drug: Carboplatin |
Advanced or Metastatic NSCLC | Daiichi Sankyo, Inc. | September 15, 2020 | Phase 1 |