yingweiwo

Duvoglustat hydrochloride

Alias: Duvoglustat; BAY-h 5595; AT2220; AT-2220; AT 2220; DNJ; 1DNJ; NOJ; Moranoline; Moranolin; Duvoglustat hydrochloride; deoxynojirimycin; 1-Deoxynojirimycin; 1-Deoxy-Nojirimycin 1-Deoxynojirimycin hydrochloride; 73285-50-4; Duvoglustat HCl; Moranoline hydrochloride; Moranoline HCl; (2R,3R,4R,5S)-2-(Hydroxymethyl)piperidine-3,4,5-triol hydrochloride
Cat No.:V20309 Purity: ≥98%
Duvoglustat hydrochloride (1-Deoxynojirimycin;AT-2220; Moranoline; deoxynojirimycin; DNJ) is a novel and potent alpha-glucosidase inhibitorfound in mulberry leaves and hasantihyperglycemic, anti-obesity, and antiviral activities.
Duvoglustat hydrochloride
Duvoglustat hydrochloride Chemical Structure CAS No.: 73285-50-4
Product category: PI3K
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Duvoglustat hydrochloride:

  • N-Boc-tetra-O-benzyl-1-deoxynojirimycin
  • Duvoglustat (1-Deoxynojirimycin)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Duvoglustat hydrochloride (1-Deoxynojirimycin; AT-2220; Moranoline; deoxynojirimycin; DNJ) is a novel and potent alpha-glucosidase inhibitor found in mulberry leaves and has antihyperglycemic, anti-obesity, and antiviral activities. Duvoglustat works as an antihyperglycemic agent by slowing the rate at which carbohydrates break down into monosaccharides, which can prevent the rise in postprandial hyperglycemia.

Biological Activity I Assay Protocols (From Reference)
Targets
α-glucosidase
ln Vitro
α-Glucosidase inhibitory activities [2]
For decades, researchers have shown that rat and human α-glucosidase is strongly inhibited by mulberry leaf extract (Anno et al., 2004, Miyahara et al., 2004, Oku et al., 2006). α-Glucosidase, located in the brush-border surface membranes of intestinal cells, is considered the most important enzyme in digestion of starch and other carbohydrates (Herscovics, 1999). Modification of carbohydrate metabolism by dietary foods and drugs may have therapeutic value. Mulberry 1-Deoxynojirimycin (Duvoglustat)/DNJ binds to the active center of α-glucosidase and is a potent inhibitor of this enzyme in the small intestine (Junge, Matzke, & Stoltefuss, 1996). For commercial development of nutraceutical products, the target compound and its concentration in the product should be known in order to achieve the best therapeutic results. In the case of mulberry dry tea, we think DNJ is the key compound because it strongly inhibits α-glucosidase and mulberry leaves contain high concentrations of it (50% of total imino sugars) (Asano et al., 2001). α-Glucosidase inhibition was highly correlated with both pure DNJ (r = 0.96) (Fig. 4B) and DNJ content of mulberry leaves (r = 0.84) (Fig. 4A). At comparable 1-Deoxynojirimycin (Duvoglustat)/DNJ concentrations, mulberry leaf extract had more α-glucosidase inhibitory activity than the DNJ standard: for example at 5 μg DNJ/ml, α-glucosidase activity was inhibited 27% by mulberry leaf extract and 23% by pure DNJ. The additional inhibition can be explained by presence in mulberry extract of other imino sugars (i.e., N-methyl-DNJ, 2-O-α-d-galactopyanosyl-DNJ and fagomine) and other ingredients such as isoquercitrin, quercetin and rutin.
ln Vivo
Duvoglustat hydrochloride (1-Deoxynojirimycin hydrochloride) (20-80 mg/kg; i.v.; daily for four weeks) shows anti-obesity effect [3]. Duvoglustat hydrochloride significantly improves insulin sensitivity via activating insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice[3].
1-Deoxynojirimycin (Duvoglustat)/DNJ is widely used for the treatment of diabetes mellitus as an inhibitor of intestinal α-glucosidase. However, there are few reports about its effect on insulin sensitivity improvement. The aim of the present study was to investigate whether DNJ decreased hyperglycemia by improving insulin sensitivity. An economical method was established to prepare large amounts of DNJ. Then, db/db mice were treated with DNJ intravenously (20, 40 and 80 mg·kg(-1)·day(-1)) for four weeks. Blood glucose and biochemical analyses were conducted to evaluate the therapeutic effects on hyperglycemia and the related molecular mechanisms in skeletal muscle were explored. DNJ significantly reduced body weight, blood glucose and serum insulin levels. DNJ treatment also improved glucose tolerance and insulin tolerance. Moreover, although expressions of total protein kinase B (AKT), phosphatidylinositol 3 kinase (PI3K), insulin receptor beta (IR-β), insulin receptor substrate-1 (IRS1) and glucose transporter 4 (GLUT4) in skeletal muscle were not affected, GLUT4 translocation and phosphorylation of Ser473-AKT, p85-PI3K, Tyr1361-IR-β and Tyr612-IRS1 were significantly increased by DNJ treatment. These results indicate that DNJ significantly improved insulin sensitivity via activating insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice. [3]
Enzyme Assay
α-Glucosidase inhibition assay [1]
α-Glucosidase inhibitory activity was measured by a modification of the procedure described by Ma, Hattori, Daneshtalab, and Wang (2008). Briefly, rat-intestine acetone powder (1 g) was suspended in 100 mM potassium phosphate buffer (pH 7.0) and the suspension was sonicated for 20 min. After centrifugation at 3000 rpm for 30 min, the supernatant was used as the source of α-glucosidase. Substrate (2 mM 4-nitrophenyl-α-d-glucopyranoside) in 100 mM potassium phosphate buffer (pH 7.0) was pipetted into 96-well plates (40 μl/well). Five μl mulberry sample or control solution (a 50:50 mixture of ethanol and distilled water) was added and the solution was mixed. After addition of enzyme (5 μl), the mixture was incubated at 37 °C for 20 min, and then UV absorbance (405 nm) was measured. The percent α-glucosidase inhibitory activity of mulberry samples and standard 1-Deoxynojirimycin (Duvoglustat)/DNJ was calculated as: (ΔAcontrol-ΔAsample) × 100/ΔAcontrol, where ΔA is absorbance at 405 nm.
Cell Assay
Western Blot [3]
In order to investigate the effects of 1-Deoxynojirimycin (Duvoglustat)/DNJ on insulin signaling pathways, western blot analysis was performed as previously described. Briefly, skeletal muscle tissues (0.1 g) were lysed in lysis buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP40, 10 μL phosphatase inhibitors, 1 μL protease inhibitor and 5 μL 100 mM PMSF), centrifuged for 15 min at 16,000× g at 4 °C, and protein concentration was quantified by bicinchonininc acid protein assay. Equal amounts of protein (70 μg) were loaded on 10% SDS-PAGE and transferred onto PVDF membranes. After membranes were blocked, they incubated with the primary antibodies against IR-β, p-Tyr1361-IR-β, IRS1, p-Tyr612-IRS1, PI3K, p-p85-PI3K, AKT, p-Ser473-AKT, GLUT4, β-actin or Na+K+-ATPase α1 overnight at 4 °C followed by HRP conjugated secondary antibody for 2 h at room temperature. Protein bands were visualized using an ECL detection kit. Normalization of total protein expression was carried out by using β-actin as control. Normalization of m-GLUT4 expression was carried out using Na+K+-ATPase α1 as control
Animal Protocol
db/db mice
20, 40, 80 mg/kg
Intravenously; daily for four weeks
At the end of ten weeks, wild-type C57BLKS mice, which received intravenously normal saline, served as a normal control (N control) (n = 6). The db/db mice were divided into four groups (n = 6): Group I served as a diabetic control and received intravenously normal saline (D control). Group II, III, and IV were treated intravenously with 1-Deoxynojirimycin (Duvoglustat)/DNJ 20, 40, and 80 mg·kg−1·day−1, respectively. An intravenous injection was selected to avoid the function of DNJ as an α-Glycosidase inhibitor inthe gastrointestinal tract. For DNJ doses selection, in our previous study, we screened a large number of Chinese traditional medicines including mulberry leaves by glucose tolerance test of ICR mice. We found the alkaloids (DNJ 40 mg·kg−1) isolated from mulberry leaves could improve the glucose tolerance test of ICR mice (Figure A1). We then tested doses of 10, 20, and 40 mg·kg−1, but both 10 and 20 mg·kg−1 did not have any effect (Figure A2). Therefore, we selected the 1-Deoxynojirimycin (Duvoglustat)/DNJ doses as 20, 40, and 80 mg·kg−1·day−1. All these doses were given for 4 weeks. The blood glucose, body weight and average food intake, water intake, and urine output were measured every week. At the end of the experimental period, the mice were anesthetized with chloral hydrate after withholding food for 12 h, and blood samples were taken to determine the serum insulin levels. Besides, skeletal muscle were removed after the blood was collected, then rinsed with a physiological saline solution, and immediately stored at −80 °C [3].
Toxicity/Toxicokinetics
rat LD50 oral >5 gm/kg BEHAVIORAL: SOMNOLENCE (GENERAL DEPRESSED ACTIVITY); KIDNEY, URETER, AND BLADDER: URINE VOLUME INCREASED; SKIN AND APPENDAGES (SKIN): HAIR: OTHER International Journal of Toxicology., 16(Suppl
References

[1]. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing. Molecules. 2016 Nov 23;21(11). pii: E1600.

[2]. Development of high 1-deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea-making conditions for highest DNJ extraction. LWT - Food Science and Technology. Volume 45, Issue 2, March 2012, Pages 226-232.

[3]. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice. Molecules. 2015 Dec 4;20(12):21700-14.

Additional Infomation
AT2220 is an experimental, oral therapy for the treatment of Pompe disease and belongs to a class of molecules known as pharmacological chaperones. It is a small molecule designed to act as a pharmacological chaperone that specifically binds, stabilizes, and facilitates the proper folding and trafficking of α-glucosidase (GAA). GAA to the lysosome, where it can perform its normal function. AT2220 has been shown to increase GAA activity in cell lines derived from Pompe patients and in transfected cells expressing misfolded forms of GAA.
An alpha-glucosidase inhibitor with antiviral action. Derivatives of deoxynojirimycin may have anti-HIV activity.
Drug Indication
Pompe disease, also known as glycogen storage disease type II or acid maltase deficiency, is a relatively rare neuromuscular and lysosomal storage disorder caused by inherited genetic mutations in a key enzyme called α-glucosidase (Gaa).
Mechanism of Action
AT2220 is designed to act as a pharmacological chaperone by selectively binding to the misfolded enzyme responsible for Pompe disease, Gaa. After binding to the enzyme, it is thought that AT2220 promotes the proper folding, processing, and trafficking of the enzyme from the endoplasmic reticulum to its final destination, the lysosome, the area of the cell where the enzyme does its work. Once it reaches the lysosome, the pharmacological chaperone is displaced, and the enzyme can perform its normal function, which is the breakdown of its natural substrate, glycogen.
Duvoglustat is an optically active form of 2-(hydroxymethyl)piperidine-3,4,5-triol having 2R,3R,4R,5S-configuration. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-HIV agent, an anti-obesity agent, a bacterial metabolite, a hypoglycemic agent, a hepatoprotective agent and a plant metabolite. It is a 2-(hydroxymethyl)piperidine-3,4,5-triol and a piperidine alkaloid.
An alpha-glucosidase inhibitor with antiviral action. Derivatives of deoxynojirimycin may have anti-HIV activity.
1-Deoxynojirimycin has been reported in Parmotrema austrosinense, Parmotrema praesorediosum, and other organisms with data available.
An alpha-glucosidase inhibitor with antiviral action. Derivatives of deoxynojirimycin may have anti-HIV activity.
See also: Fagomine (annotation moved to).
1-Deoxynojirimycin (DNJ, C₆H13NO₄, 163.17 g/mol), an alkaloid azasugar or iminosugar, is a biologically active natural compound that exists in mulberry leaves and Commelina communis (dayflower) as well as from several bacterial strains such as Bacillus and Streptomyces species. Deoxynojirimycin possesses antihyperglycemic, anti-obesity, and antiviral features. Therefore, the aim of this detailed review article is to summarize the existing knowledge on occurrence, extraction, purification, determination, chemistry, and bioactivities of DNJ, so that researchers may use it to explore future perspectives of research on DNJ. Moreover, possible molecular targets of DNJ will also be investigated using suitable in silico approach.[1]
Mulberry 1-deoxynojirimycin (DNJ), a potent α-glucosidase inhibitor, suppresses postprandial blood glucose, thereby possibly preventing diabetes mellitus. At present, mulberry dry teas are commercially supplied as functional foods in many countries, but these products may not provide an effective dose (6 mg DNJ/60 kg human wt) due to their low DNJ content (about 100 mg/100 g of dry wt). Therefore, development of tea with higher DNJ content is desirable. To do this, we investigated distribution of DNJ content and α-glucosidase inhibitory activity in 35 Thai mulberry varieties. DNJ content in young leaves varied among mulberry varieties from 30 to 170 mg/100 g of dry leaves. Varieties having highest DNJ content were Kam, Burirum 60 and Burirum 51. Leaf position affected DNJ content: shoots > young leaves > mature leaves. DNJ concentration and α-glucosidase inhibitory activity were highly correlated (r = 0.84), suggesting that α-glucosidase inhibitory activity of mulberry leaves is mainly due to DNJ. Consequently, high DNJ content mulberry tea was produced from shoots of varieties such as Burirum 60, which contains 300 mg/100 g of dry wt. Tea-making conditions were optimized for highest DNJ extraction using response surface methodology. Approximate 95% of total DNJ in high DNJ content dry tea was extracted when temperature was maintained at 98 °C for 400 s; these conditions could be applicable for preparation of commercial products with high DNJ content. One cup (230 ml, a normal serving) of DNJ-enriched mulberry tea contained enough DNJ (6.5 mg) to effectively suppress postprandial blood glucose.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C6H14CLNO4
Molecular Weight
199.631
Exact Mass
199.061
Elemental Analysis
C, 36.10; H, 7.07; Cl, 17.76; N, 7.02; O, 32.06
CAS #
73285-50-4
Related CAS #
1-Deoxynojirimycin;19130-96-2
PubChem CID
13018787
Appearance
White to off-white solid powder
Density
1.456 g/cm3
Boiling Point
361.1ºC at 760 mmHg
Melting Point
195-196ºC
Flash Point
197.3ºC
Hydrogen Bond Donor Count
6
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
1
Heavy Atom Count
12
Complexity
132
Defined Atom Stereocenter Count
4
SMILES
Cl.OC[C@H]1NC[C@H](O)[C@@H](O)[C@@H]1O
InChi Key
ZJIHMALTJRDNQI-VFQQELCFSA-N
InChi Code
InChI=1S/C6H13NO4.ClH/c8-2-3-5(10)6(11)4(9)1-7-3/h3-11H,1-2H21H/t3-,4+,5-,6-/m1./s1
Chemical Name
(2R,3R,4R,5S)-2-(hydroxymethyl)piperidine-3,4,5-triol hydrochloride
Synonyms
Duvoglustat; BAY-h 5595; AT2220; AT-2220; AT 2220; DNJ; 1DNJ; NOJ; Moranoline; Moranolin; Duvoglustat hydrochloride; deoxynojirimycin; 1-Deoxynojirimycin; 1-Deoxy-Nojirimycin 1-Deoxynojirimycin hydrochloride; 73285-50-4; Duvoglustat HCl; Moranoline hydrochloride; Moranoline HCl; (2R,3R,4R,5S)-2-(Hydroxymethyl)piperidine-3,4,5-triol hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~250 mg/mL (~1252.32 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.0093 mL 25.0463 mL 50.0927 mL
5 mM 1.0019 mL 5.0093 mL 10.0185 mL
10 mM 0.5009 mL 2.5046 mL 5.0093 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Status Interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01380743 Completed Drug: duvoglustat
Drug: rhGAA
Pompe Disease Amicus Therapeutics October 31, 2011 Phase 2
NCT01489995 Completed Drug: A (migalastat)
Drug: B (migalastat)
Fabry Disease Amicus Therapeutics October 2011 Phase 1
NCT03832452 Completed Other: Placebo
Drug: Moxifloxacin
Healthy Idorsia Pharmaceuticals Ltd. February 14, 2019 Phase 1
NCT01822028 Completed Drug: Treatment A
Drug: Treatment B
Diarrhea Actelion March 2013 Phase 1
NCT01853852 Completed Other: Potable water
Drug: Placebo capsule
Fabry Disease Amicus Therapeutics September 2011 Phase 1
Contact Us