My cart
In the shopping cart is not goods, to choose and buy!
  • Product Name
  • Size
  • Quantity
  • Amount
    Selected items : 0 pieces Total : CHECK OUT()
    Doxapram (AHR-619, Dopram, Stimulex or Respiram)
    Doxapram (AHR-619, Dopram, Stimulex or Respiram)

    Price:
    Market Price:

    This product is for research use only, not for human use. We do not sell to patients.
    Number: - + Pieces(InventoryPieces)
    InvivoChem Cat #: V0087
    CAS #: 309-29-5Purity ≥98%

    Description: Doxapram (AHR619, Dopram, Stimulex or Respiram) is a novel potent respiratory stimulant that acts by inhibiting the potassium channels such as TASK-1, TASK-3, TASK-1/TASK-3 with EC50 of 410 nM, 37 μM, 9 μM, respectively. It is a medication used in intensive care settings to stimulate the respiratory rate in patients with respiratory failure.

    References:  2006 Mar;102(3):779-85.

    Related CAS: 7081-53-0 (HCl)  309-29-5 (free base)

    Customer Validation
    Official Supplier of
    • VE
    • OF
    • YALE
    • hhmi
    • 香港大学
    Related Products
    Publications Citing InvivoChem Products
    • Physicochemical and Storage Information
    • Protocol
    • Quality Control Documentation
    • Related Biological Data
    • Customer Review
    Molecular Weight (MW) 378.51
    Formula C24H30N2O2
    CAS No. 309-29-5 (free base); 
    Storage-20℃ for 3 years in powder form
    -80℃ for 2 years in solvent
    Solubility (In vitro)DMSO: > 10 mM 
    Water: <1 mg/mL
    Ethanol: <1 mg/mL
    Chemical Name 1-ethyl-4- (2-morpholin-4-ylethyl)- 3,3-diphenyl-pyrrolidin-2-one
    Synonyms AHR619; AHR-619; AHR 619; Dopram, Stimulex or Respiram.
    SMILES Code O=C1N(CC)CC(CCN2CCOCC2)C1(C3=CC=CC=C3)C4=CC=CC=C4


    • Molarity Calculator
    • Dilution Calculator
    • The molarity calculator equation

      Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

      • Mass
      • Concentration
      • Volume
      • Molecular Weight *
      • =
      • ×
      • ×
    • The dilution calculator equation

      Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

      This equation is commonly abbreviated as: C1V1 = C2V2

      • Concentration (start)
      • ×
      • Volume (start)
      • =
      • Concentration (final)
      • ×
      • Volume (final)
      • ×
      • =
      • ×
      • C1
      •  
      • V1
      •  
      • C2
      •  
      • V2
    In Vitro

    In vitro activity: Doxapram is a respiratory stimulant that inhibits TASK-1, TASK-3, TASK-1/TASK-3 heterodimeric channel function with EC50 of 410 nM, 37 μM, 9 μM, respectively. Doxapram preferentially stimulated the release of dopamine. It was also seen to directly inhibit Ca(2+)-independent K+ currents. Doxapram was a more potent inhibitor of the Ca(2+)-activated K+ currents recorded under control conditions. Doxapram (at 15-150 μM) also evoked 3H overflow in a concentration dependent manner, and doxapram-evoked release was inhibited by the Ca2+ channel blocker nifedipine (5 μM). The effects of doxapram on type I cells show similarities to those of the physiological stimuli of the carotid body, suggesting that doxapram may share a similar mechanism of action in stimulating the intact organ. 


    Kinase Assay: Doxapram inhibited TASK-1 (half-maximal effective concentration [EC50], 410 nM), TASK-3 (EC50, 37 microM), and TASK-1/TASK-3 heterodimeric channel function (EC50, 9 microM). 


    Cell Assay: Doxapram (1-100 microM) caused rapid, reversible and dose-dependent inhibitions of K+ currents recorded in type I cells (IC50 approximately 13 microM). doxapram was also seen to directly inhibit Ca(2+)-independent K+ currents. Doxapram was a more potent inhibitor of the Ca(2+)-activated K+ currents recorded under control conditions. Doxapram (10 microM) was without effect on L-type Ca2+ channel currents recorded under conditions where K+ channel activity was minimized and was also without significant effect on K+ currents recorded in the neuronal cell line NG-108 15, suggesting a selective effect on carotid body type I cells. The effects of doxapram on type I cells show similarities to those of the physiological stimuli of the carotid body, suggesting that doxapram may share a similar mechanism of action in stimulating the intact organ.

    In Vivo
    Animal model
    Formulation & Dosage
    References  2006 Mar;102(3):779-85.


    These protocols are for reference only. InvivoChem does not independently validate these methods.

    评论

      Home Prev Next Last page / pices

      发评论

      ×
      Your information is safe with us. * Required Fields.
      Products are for research use only;  We do not sell to patients
      Tel: 1-708-310-1919
      Fax: 1-708-557-7486
      Subscribe to our E-newsletter
      • Name*
      • *
      • E-mail*
      • *
      • instructions:
      • *
      Copyright 2020 InvivoChem LLC | All Rights Reserved
      prompt
      Do you confirm the receipt?