Size | Price | |
---|---|---|
Other Sizes |
ln Vitro |
Pseudomonas produces D-gluconic acid, a simple sugar acid, which is the primary antifungal metabolite. Strait AN5 provides protection against a variety of fungal diseases through biocontrol [1].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
(99)TCM-LABELED GLUCONATE WAS ACCUMULATED RELATIVELY EARLY IN THE KIDNEY, AND ESP IN THE URINARY TRACT. |
References | |
Additional Infomation |
Ammonium gluconate is a white solid with a weak odor of ammonia. Sinks and mixes with water. (USCG, 1999)
D-gluconic acid is a gluconic acid having D-configuration. It has a role as a chelator and a Penicillium metabolite. It is a conjugate acid of a D-gluconate. It is an enantiomer of a L-gluconic acid. Commonly found in salts with sodium and calcium. Gluconic acid or gluconate is used to maintain the cation-anion balance on electrolyte solutions. Gluconic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gluconic acid has been reported in Ascochyta medicaginicola, Tricholoma robustum, and other organisms with data available. Gluconic Acid is the carboxylic acid formed by the oxidation of the first carbon of glucose with antiseptic and chelating properties. Gluconic acid, found abundantly in plant, honey and wine, can be prepared by fungal fermentation process commercially. This agent and its derivatives can used in formulation of pharmaceuticals, cosmetics and food products as additive or buffer salts. Aqueous gluconic acid solution contains cyclic ester glucono delta lactone structure, which chelates metal ions and forms very stable complexes. In alkaline solution, this agent exhibits strong chelating activities towards anions, i.e. calcium, iron, aluminium, copper, and other heavy metals. Gluconic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Drug Indication For use as part of electrolyte supplementation in total parenteral nutrition. Pharmacodynamics Used as part of electrolyte salts to maintain cation-anion balance in solutions. |
Molecular Formula |
C6H12O7
|
---|---|
Molecular Weight |
196.1553
|
Exact Mass |
196.058
|
CAS # |
526-95-4
|
Related CAS # |
D-Gluconic acid calcium hydrate;66905-23-5;D-Gluconic acid potassium;299-27-4
|
PubChem CID |
10690
|
Appearance |
Colorless to light yellow liquid
|
Density |
1.23
|
Boiling Point |
102 °C
|
Melting Point |
15 °C
|
Flash Point |
375.2±28.0 °C
|
Vapour Pressure |
0.0±4.7 mmHg at 25°C
|
Index of Refraction |
1.4161
|
LogP |
-3.17
|
Hydrogen Bond Donor Count |
6
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
13
|
Complexity |
170
|
Defined Atom Stereocenter Count |
4
|
SMILES |
O([H])[C@]([H])([C@@]([H])(C([H])([H])O[H])O[H])[C@@]([H])([C@]([H])(C(=O)O[H])O[H])O[H]
|
InChi Key |
RGHNJXZEOKUKBD-SQOUGZDYSA-N
|
InChi Code |
InChI=1S/C6H12O7/c7-1-2(8)3(9)4(10)5(11)6(12)13/h2-5,7-11H,1H2,(H,12,13)/t2-,3-,4+,5-/m1/s1
|
Chemical Name |
(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~100 mg/mL (~509.79 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 5.0979 mL | 25.4894 mL | 50.9788 mL | |
5 mM | 1.0196 mL | 5.0979 mL | 10.1958 mL | |
10 mM | 0.5098 mL | 2.5489 mL | 5.0979 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.