yingweiwo

Chelerythrine

Alias: Toddalin; cheleritrine; Toddaline; broussonpapyrine; [1,3]Benzodioxolo[5,6-c]phenanthridinium, 1,2-dimethoxy-12-methyl-; EINECS 251-930-0; Chelerythrine
Cat No.:V30832 Purity: ≥98%
Chelerythrine is a naturally occurring alkaloid that is a potent and specific Ca2+/phospholipid-dependent PKC antagonist (inhibitor) with IC50 of 0.7 μM.
Chelerythrine
Chelerythrine Chemical Structure CAS No.: 34316-15-9
Product category: PKC
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Chelerythrine:

  • CHELERYTHRINE CHLORIDE
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Chelerythrine is a naturally occurring alkaloid that is a potent and specific Ca2+/phospholipid-dependent PKC antagonist (inhibitor) with IC50 of 0.7 μM. Chelerythrine has anti-tumor, anti-diabetic, and anti~inflammatory activities. Chelerythrine inhibits BclXL-Bak BH3 peptide binding with IC50 of 1.5 μM and displaces Bax from BclXL. Chelerythrine causes apoptosis and autophagy.
Biological Activity I Assay Protocols (From Reference)
Targets
PKC (IC50 = 0.7 μM)
ln Vitro
L-1210 cell growth is inhibited by chelerythrine (IC50: 0.53 uM) for 48 hours[1]. Chelerythrine (0–20 μM, 24 hours) can increase autophagy and self-healing in cells while suppressing the viability of A549 and NCI-H1299 cells. Chelerythrine (0–5 μM, 24 or 48 hours) can cause SH-SY5Y cells that overexpress BclXL. Death [3]. In SH-SY5Y cells, chelerythrine (2.5–10 μM, 16) can cause necrosis [4]. Chelidonine (0-100 ng/mL, 24 hours) decreases the production of NO and TNF-α in primary macrophages stimulated by LPS. Cheerythrine (MIC: 0.156 mg/mL) exhibits antibacterial activity against MRSA, extended-spectrum beta-lactamase Staphylococcus aureus (ESBLs-SA), and Gram-positive bacteria.
ln Vivo
Renal function can be restored and the renal damage caused by partial uniuretic ureteral obstruction (UUO) in neovascularization can be lessened with erythrine (5 mg/kg, intraperitoneal injection, daily) [2]. Increased nocturnal rate, decreased nitrite and TNF-α levels, as well as anti-inflammatory effects were observed in LPS-induced toxic shock after injections of chelerythrine (1–10 mg/kg, i.p.) and 100 μg/kg LPS (first 24 hours and 1 hour) [5].
Enzyme Assay
The benzophenanthridine alkaloid chelerythrine is a potent, selective antagonist of the Ca++/phospholopid-dependent protein kinase (Protein kinase C: PKC) from the rat brain. Half-maximal inhibition of the kinase occurs at 0.66 microM. Chelerythrine interacted with the catalytic domain of PKC, was a competitive inhibitor with respect to the phosphate acceptor (histone IIIS) (Ki = 0.7 microM) and a non-competitive inhibitor with respect to ATP. This effect was further evidenced by the fact that chelerythrine inhibited native PKC and its catalytic fragment identically and did not affect [3H]- phorbol 12,13 dibutyrate binding to PKC. Chelerythrine selectively inhibited PKC compared to tyrosine protein kinase, cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase. The potent antitumoral activity of celerythrine measured in vitro might be due at least in part to inhibition of PKC and thus suggests that PKC may be a model for rational design of antitumor drugs.[1]
The identification of small molecule inhibitors of antiapoptotic Bcl-2 family members has opened up new therapeutic opportunities, while the vast diversity of chemical structures and biological activities of natural products are yet to be systematically exploited. Here we report the identification of chelerythrine as an inhibitor of BclXL-Bak Bcl-2 homology 3 (BH3) domain binding through a high throughput screening of 107,423 extracts derived from natural products. Chelerythrine inhibited the BclXL-Bak BH3 peptide binding with IC50 of 1.5 micro m and displaced Bax, a BH3-containing protein, from BclXL. Mammalian cells treated with chelerythrine underwent apoptosis with characteristic features that suggest involvement of the mitochondrial pathway. While staurosporine, H7, etoposide, and chelerythrine released cytochrome c from mitochondria in intact cells, only chelerythrine released cytochrome c from isolated mitochondria. Furthermore BclXL-overexpressing cells that were completely resistant to apoptotic stimuli used in this study remained sensitive to chelerythrine. Although chelerythrine is widely known as a protein kinase C inhibitor, the mechanism by which it mediates apoptosis remain controversial. Our data suggest that chelerythrine triggers apoptosis through a mechanism that involves direct targeting of Bcl-2 family proteins[3].
Cell Assay
Western Blot analysis [4]
Cell Types: A549 and NCI-H1299 Cell
Tested Concentrations: 10, 15, 20 μM
Incubation Duration: 24 h
Experimental Results: The expression of LC3-II was induced in a beclin 1-dependent manner.
Animal Protocol
Animal/Disease Models: Unilateral ureteral obstruction (UUO)-induced neonatal rats [2]
Doses: 5 mg/kg
Route of Administration: intraperitoneal (ip) injection, daily
Experimental Results: diminished renal damage (increased kidney weight and restored renal function). Inhibits UUO-induced upregulation of renal injury molecule 1 expression, cell apoptosis and renal fibrosis.
Toxicity/Toxicokinetics
Toxicity Summary
Chelerythrine is a potent, selective, and cell-permeable protein kinase C (PKC) inhibitor. It is also the major active natural product found in the plant Zanthoxylum clava-herculis, exhibiting anti-bacterial activity against Staphylococcus aureus. (Wikipedia) Chelerythrine is a selective inhibitor of group A and B PKC isoforms with an antitumor activity. Inhibition of PKC with chelerythrine chloride induces apoptosis by activation of a neutral sphingomyelinase, accumulation of ceramide, and depletion of sphingomyelin. Chelerythrine is at least 100-fold more selective for PKCs than for other kinases. Chelerythrine competes for the conserved catalytic sites of PKC and seems to be a potent and specific inhibitor of the group A and group B kinases. Chelerythrine exhibited cytotoxic activity against nine human tumor cell lines tested in vitro. Radioresistant and chemoresistant squamous cell carcinoma lines (HNSCC) undergo apoptosis rapidly after treatment with chelerythrine in vitro. Chelerythrine treatment of nude mice bearing SQ-20B HNSCC cells is associated with significant tumor growth delay. Also, treatment with chelerythrine resulted in minimal toxicity. (A15441)
Toxicity Summary
Chelerythrine is a potent, selective, and cell-permeable protein kinase C (PKC) inhibitor. It is also the major active natural product found in the plant Zanthoxylum clava-herculis, exhibiting anti-bacterial activity against Staphylococcus aureus. (Wikipedia) Chelerythrine is a selective inhibitor of group A and B PKC isoforms with an antitumor activity. Inhibition of PKC with chelerythrine chloride induces apoptosis by activation of a neutral sphingomyelinase, accumulation of ceramide, and depletion of sphingomyelin. Chelerythrine is at least 100-fold more selective for PKCs than for other kinases. Chelerythrine competes for the conserved catalytic sites of PKC and seems to be a potent and specific inhibitor of the group A and group B kinases. Chelerythrine exhibited cytotoxic activity against nine human tumor cell lines tested in vitro. Radioresistant and chemoresistant squamous cell carcinoma lines (HNSCC) undergo apoptosis rapidly after treatment with chelerythrine in vitro. Chelerythrine treatment of nude mice bearing SQ-20B HNSCC cells is associated with significant tumor growth delay. Also, treatment with chelerythrine resulted in minimal toxicity.
References

[1]. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990 Nov 15;172(3):993-9.

[2]. Protein kinase C inhibitor chelerythrine attenuates partial unilateral ureteral obstruction induced kidney injury in neonatal rats. Life Sci. 2019 Jan 1;216:85-91.

[3]. Identification of chelerythrine as an inhibitor of BclXL function.J Biol Chem. 2003 Jun 6;278(23):20453-6.

[4]. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells.Redox Biol. 2017 Aug;12:367-376.

[5]. Effect of chelerythrine against endotoxic shock in mice and its modulation of inflammatory mediators in peritoneal macrophages through the modulation of mitogen-activated protein kinase (MAPK) pathway. Inflammation. 2012 Dec;35(6):1814-24.

[6]. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam. BMC Complement Altern Med. 2018 Sep 26;18(1):261.

Additional Infomation
Chelerythrine is a benzophenanthridine alkaloid isolated from the root of Zanthoxylum simulans, Chelidonium majus L., and other Papaveraceae. It has a role as an EC 2.7.11.13 (protein kinase C) inhibitor, an antibacterial agent and an antineoplastic agent. It is a benzophenanthridine alkaloid and an organic cation.
A benzophenanthridine alkaloid evaluated as a kinase-inhibitor.
Chelerythrine has been reported in Corydalis ternata, Zanthoxylum simulans, and other organisms with data available.
Chelerythrine is a benzophenanthridine alkaloid extracted from the plant Greater celandine (Chelidonium majus). It is a potent, selective, and cell-permeable protein kinase C inhibitor.
See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of).
The present study aimed to evaluate the renoprotective effects of chelerythrine (CHE), a protein kinase C inhibitor, on neonatal rats after partial unilateral ureteral obstruction (UUO) surgery. New born Sprague Dawley rats were subjected to partial UUO 48 h after birth and received a daily intraperitoneal injection of 5 mg/kg CHE. At 21-day age, the rats were scarified and the kidneys were collected for analysis. Results showed that CHE treatment significantly increased kidney weight and restored renal function in the obstructed kidney. Histological examination demonstrated that CHE attenuated renal injury by reducing renal parenchymal loss and preventing glomerular and tubular degeneration. In addition, CHE inhibited partial UUO-induced upregulated kidney injury molecule-1 expression and apoptosis and renal fibrosis. Moreover, as a PKC inhibitor, CHE significantly inhibited PKCα and PKCβ membrane translocation. This action may be associated with its effects of anti-apoptosis and anti-fibrosis and contribute to the renoprotection. This short-term study suggests that CHE is beneficial for obstructive nephropathy in neonatal rats and provides foundation for further studies to reveal the long-term effects of CHE on obstructive nephropathy in children and infants.[2]
Chelerythrine (CHE), a natural benzo[c]phenanthridine alkaloid, shows anti-cancer effect through a number of mechanisms. Herein, the effect and mechanism of the CHE-induced autophagy, a type II programmed cell death, in non-small cell lung cancer (NSCLC) cells were studied for the first time. CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a concentration-dependent manner in NSCLC A549 and NCI-H1299 cells. In addition, CHE triggered the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II). The CHE-induced expression of LC3-II was further increased in the combination treatment with chloroquine (CQ), an autophagy inhibitor, and large amounts of red-puncta were observed in the CHE-treated A549 cells with stable expression of mRFP-EGFP-LC3, indicating that CHE induces autophagy flux. Silence of beclin 1 reversed the CHE-induced expression of LC3-II. Inhibition of autophagy remarkably reversed the CHE-induced cell viability decrease and apoptosis in NCI-H1299 cells but not in A549 cells. Furthermore, CHE triggered reactive oxygen species (ROS) generation in both cell lines. A decreased level of ROS through pretreatment with N-acetyl-L-cysteine reversed the CHE-induced cell viability decrease, apoptosis, and autophagy. Taken together, CHE induced distinctive autophagy in A549 (accompanied autophagy) and NCI-H1299 (pro-death autophagy) cells and a decreased level of ROS reversed the effect of CHE in NSCLC cells in terms of cell viability, apoptosis, and autophagy.[4]
A quaternary benzo [c] alkaloid chelerythrine (CHE), which is a traditional herbal prescription, has been used for the treatment of various inflammatory diseases. To gain insight into the anti-inflammatory effect and molecular mechanisms underlying the anti-inflammatory activity of CHE, we used experimentally induced mice endotoxic shock moled and lipopolysaccharide (LPS)-induced murine peritoneal macrophages to examine the anti-inflammatory function of CHE. CHE displayed significant anti-inflammatory effects in experimentally induced mice endotoxic shock model in vivo through inhibition of LPS-induced tumor necrosis factor-alpha (TNF-α) level and nitric oxide (NO) production in serum. Additionally, our data suggest that CHE treatment inhibits LPS-induced TNF-α level and NO production in LPS-induced murine peritoneal macrophages through selective inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. Moreover, the effects of CHE on NO and cytokine TNF-α production can possibly be explained by the role of p38 MAPK and ERK1/2 in the regulation of inflammatory mediators expression.[5]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H18NO4
Molecular Weight
348.3719
Exact Mass
348.123
Elemental Analysis
C, 72.40; H, 5.21; N, 4.02; O, 18.37
CAS #
34316-15-9
Related CAS #
Chelerythrine chloride;3895-92-9; 478-03-5 (OH-); 3895-92-9 (chloride); 34316-15-9
PubChem CID
2703
Appearance
Typically exists as solid at room temperature
Melting Point
195-205ºC
LogP
0.72
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
2
Heavy Atom Count
26
Complexity
516
Defined Atom Stereocenter Count
0
SMILES
O1C([H])([H])OC2=C1C([H])=C1C(=C2[H])C([H])=C([H])C2=C3C([H])=C([H])C(=C(C3=C([H])[N+](C([H])([H])[H])=C21)OC([H])([H])[H])OC([H])([H])[H]
InChi Key
LLEJIEBFSOEYIV-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H18NO4/c1-22-10-16-13(6-7-17(23-2)21(16)24-3)14-5-4-12-8-18-19(26-11-25-18)9-15(12)20(14)22/h4-10H,11H2,1-3H3/q+1
Chemical Name
1,2-dimethoxy-12-methyl-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium
Synonyms
Toddalin; cheleritrine; Toddaline; broussonpapyrine; [1,3]Benzodioxolo[5,6-c]phenanthridinium, 1,2-dimethoxy-12-methyl-; EINECS 251-930-0; Chelerythrine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8705 mL 14.3526 mL 28.7051 mL
5 mM 0.5741 mL 2.8705 mL 5.7410 mL
10 mM 0.2871 mL 1.4353 mL 2.8705 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us