yingweiwo

BRL15572 free base

Alias: BRL 15572; BRL-15572; BRL-15572; 734517-40-9; BRL 15572; BRL15572; BRL-15572free; BRL-15,572; 3-[4-(3-chlorophenyl)piperazin-1-yl]-1,1-diphenylpropan-2-ol; CHEBI:64060; BRL15572
Cat No.:V2412 Purity: ≥98%
BRL 15572 free base is an antagonist of 5-HT1D with around 60× selectivity over other related receptors.
BRL15572 free base
BRL15572 free base Chemical Structure CAS No.: 734517-40-9
Product category: 5-HT Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

BRL 15572 free base is an antagonist of 5-HT1D with around 60× selectivity over other related receptors.

Biological Activity I Assay Protocols (From Reference)
Targets
human 5-HT1D receptors
ln Vitro
On human receptors produced in CHO cells, BRL-15572 displays a 60-fold greater affinity for h5-HT1D (pKi=7.9) than 5-HT1B receptors[1]. [35S]GTPγS binding is stimulated in CHO cell membranes expressing h5-HT1B and h5-HT1D receptors by BRL-15572 (0.1 nM–10 μM)[1].
ln Vivo
In the formalin test, BRL-15572 inhibits the antinociception elicited by (-)-epicatechin[2]. The guinea pig's body temperature is unaffected by BRL-15572 (0.1–10 mg/kg; ip) and BRL-15572 (0.3–100.0 mg/kg; ip) and is hence inactive[3].
Enzyme Assay
Despite only modest homology between h5-HT1B and h5-HT1D receptor amino acid sequences, these receptors display a remarkably similar pharmacology. To date there are few compounds which discriminate between these receptor subtypes and those with some degree of selectivity, such as ketanserin, have greater affinity for other 5-HT receptor subtypes. We now report on two compounds, SB-216641 (N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide) and BRL-15572 3-[4-(3-chlorophenyl) piperazin-1-yl]-1,1-diphenyl-2-propanol), which display high affinity and selectivity for h5-HT1B and h5-HT1D receptors, respectively. In receptor binding studies on human receptors expressed in CHO cells, SB-216641 has high affinity (pKi = 9.0) for h5-HT1B receptors and has 25-fold lower affinity at h5-HT1D receptors. In contrast, BRL-15572 has 60-fold higher affinity for h5-HT1D (pKi = 7.9) than 5-HT1B receptors. Similar affinities for these compounds were determined on native tissue 5-HT1B receptors in guinea-pig striatum. Functional activities of SB-216641 and BRL-15572 were measured in a [35S]GTPgammaS binding assay and in a cAMP accumulation assay on recombinant h5-HT1B and h5-HT1D receptors. Both compounds were partial agonists in these high receptor expression systems, with potencies and selectivities which correlated with their receptor binding affinities. In the cAMP accumulation assay, results from pK(B) measurements on the compounds again correlated with receptor binding affinities (SB-216641, pK(B) = 9.3 and 7.3; BRL-15572, pK(B) = <6 and 7.1, for h5-HT1B and h5-HT1D receptors respectively). These compounds will be useful pharmacological agents to characterise 5-HT1B and 5-HT1D receptor mediated responses[1].
Animal Protocol
The aim of this study was to investigate the antinociceptive potential of (-)-epicatechin and the possible mechanisms of action involved in its antinociceptive effect. The carrageenan and formalin tests were used as inflammatory pain models. A plethysmometer was used to measure inflammation and L5/L6 spinal nerve ligation as a neuropathic pain model. Oral (-)-epicatechin reduced carrageenan-induced inflammation and nociception by about 59 and 73%, respectively, and reduced formalin- induced and nerve injury-induced nociception by about 86 and 43%, respectively. (-)-Epicatechin-induced antinociception in the formalin test was prevented by the intraperitoneal administration of antagonists: methiothepin (5-HT1/5 receptor), WAY-100635 (5-HT1A receptor), SB-224289 (5-HT1B receptor), BRL-15572 (5-HT1D receptor), SB-699551 (5-HT5A receptor), naloxone (opioid receptor), CTAP (μ opioid receptor), nor-binaltorphimine (κ opioid receptor), and 7-benzylidenenaltrexone (δ1 opioid receptor). The effect of (-)-epicatechin was also prevented by the intraperitoneal administration of L-NAME [nitric oxide (NO) synthase inhibitor], 7-nitroindazole (neuronal NO synthase inhibitor), ODQ (guanylyl cyclase inhibitor), glibenclamide (ATP-sensitive K channel blocker), 4-aminopyridine (voltage-dependent K channel blocker), and iberiotoxin (large-conductance Ca-activated K channel blocker), but not by amiloride (acid sensing ion channel blocker). The data suggest that (-)-epicatechin exerts its antinociceptive effects by activation of the NO-cyclic GMP-K channels pathway, 5-HT1A/1B/1D/5A serotonergic receptors, and μ/κ/δ opioid receptors.[2]
The selective, brain penetrant, 5-HT(1B/D) (formerly 5-HT(1D beta/alpha)) receptor agonist SKF-99101H (3-(2-dimethylaminoethyl)-4-chloro-5-propoxyindole hemifumarate) (30 mg/kg i.p.) causes a dose related fall in rectal temperature in guinea pigs which previous studies have shown to be blocked by the non-selective 5-HT(1B/D) receptor antagonist GR-127935 (N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1'biphenyl]-4-carboxamide oxalate). The present study shows that the hypothermic response to SKF-99101H is dose-dependently blocked by SB-224289G (1'-methyl-5-(2'-methyl-4'-[(5-methyl-1,2,4-oxadiazol-3-yl)bipheny l-4-yl]carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-pi peridone] hemioxalate) (0.3-10.0 mg/kg p.o.) (ED50 3.62 mg/kg), which is the first compound to be described which is more than 60 fold selective for the 5-HT1B receptor over the 5-HT1D receptor. SB-216641A (N-[3-(2-dimethylamino) ethoxy-4-methoxy-phenyl] 2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-car boxamide hydrochloride) (0.6-20.0 mg/kg i.p.), which is somewhat less selective (30 fold) for the 5-HT1B receptor over the 5-HT1D receptor had a similar effect (ED50 4.43 mg/kg). The brain penetrant 5-HT1D selective receptor antagonist, BRL-15572 (4-(3-chlorophenyl)-alpha-(diphenylmethyl)-1-piperazineethanol+ ++ dihydrochloride) (0.3-100.0 mg/kg i.p.) was inactive. When administered alone neither BRL-15572 (0.1-10 mg/kg i.p.) nor SB-224289G (2.2-22 mg/kg p.o.) had an effect on body temperature. These data demonstrate that 5-HT1B (formerly 5-HT(1D beta)) and not 5-HT1D (formerly 5-HT(1D alpha)) receptors mediate the hypothermic response to SKF-99101H (30 mg/kg i.p.) in guinea pigs. The compounds described are useful pharmacological tools for distinguishing responses to 5-HT1B and 5-HT1D receptors.[3]
References
[1]. Price GW, et, al. SB-216641 and BRL-15572--compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol. 1997 Sep; 356(3): 312-20.
[2]. Geovanna NQ, et, al. Antinociceptive effect of (-)-epicatechin in inflammatory and neuropathic pain in rats. Behav Pharmacol. 2018 Apr; 29(2 and 3-Spec Issue): 270-279. [3]. Hagan JJ, et, al. Stimulation of 5-HT1B receptors causes hypothermia in the guinea pig. Eur J Pharmacol. 1997 Jul 23; 331(2-3): 169-74.
Additional Infomation
3-[4-(3-chlorophenyl)piperazin-1-yl]-1,1-diphenylpropan-2-ol is an N-alkylpiperazine that is 1-(3-chlorophenyl)piperazine carrying a 3,3-diphenyl-2-hydroxyprop-1-yl group at position 4. A selective h5-HT1D antagonist, displaying 60-fold selectivity over h5-HT1B, and exhibiting little or no affinity for a range of other receptor types. It has a role as a serotonergic antagonist and a geroprotector. It is a N-alkylpiperazine, a N-arylpiperazine, a secondary alcohol and a member of monochlorobenzenes. It is a conjugate base of a 4-(3-chlorophenyl)-1-(2-hydroxy-3,3-diphenylpropyl)piperazin-1-ium(1+).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H27CLN2O
Molecular Weight
406.947685480118
Exact Mass
406.18
Elemental Analysis
C, 73.79; H, 6.69; Cl, 8.71; N, 6.88; O, 3.93
CAS #
734517-40-9
Related CAS #
193611-72-2 (HCl); 734517-40-9
PubChem CID
3654103
Appearance
Solid powder
LogP
5.3
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
6
Heavy Atom Count
29
Complexity
451
Defined Atom Stereocenter Count
0
InChi Key
QJHCTHPYUOXOGM-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H27ClN2O/c26-22-12-7-13-23(18-22)28-16-14-27(15-17-28)19-24(29)25(20-8-3-1-4-9-20)21-10-5-2-6-11-21/h1-13,18,24-25,29H,14-17,19H2
Chemical Name
3-[4-(3-chlorophenyl)piperazin-1-yl]-1,1-diphenylpropan-2-ol
Synonyms
BRL 15572; BRL-15572; BRL-15572; 734517-40-9; BRL 15572; BRL15572; BRL-15572free; BRL-15,572; 3-[4-(3-chlorophenyl)piperazin-1-yl]-1,1-diphenylpropan-2-ol; CHEBI:64060; BRL15572
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~81 mg/mL (~199.0 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4573 mL 12.2865 mL 24.5730 mL
5 mM 0.4915 mL 2.4573 mL 4.9146 mL
10 mM 0.2457 mL 1.2287 mL 2.4573 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us