BMS-582949

Alias: PS540446; BMS-582949; BMS 582949; PS-540446; PS 540446; BMS582949; BMS582949 free base
Cat No.:V2686 Purity: ≥98%
BMS-582949 (also known as PS540446) is a potent and highly selective p38 mitogen-activated protein kinase (p38 MAPK) inhibitor with IC50 of 13nM.
BMS-582949 Chemical Structure CAS No.: 623152-17-0
Product category: p38 MAPK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of BMS-582949:

  • BMS-582949 HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
InvivoChem's BMS-582949 has been cited by 1 publication
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BMS-582949 (also known as PS540446) is a potent and highly selective p38 mitogen-activated protein kinase (p38 MAPK) inhibitor with IC50 of 13nM. It is presently undergoing phase II clinical trials for the treatment of rheumatoid arthritis. Inhibiting p38MAPK, a crucial component of the inflammatory pathways involved in atherothrombosis, may lessen inflammation within atherosclerotic plaques. Both p38 kinase activity and p38 activation are inhibited by the drug BMS-582949. By measuring p38's phosphorylation, BMS-582949 is found to inhibit p38 activation in cells. Treatment with BMS-582949 of cells in which p38 has been activated by LPS quickly reversed p38 activation, as demonstrated by loss of phosphorylation of p38.

Biological Activity I Assay Protocols (From Reference)
Targets
p38α (IC50 = 13 nM)
ln Vitro
BMS-582949 is discovered to prevent p38 activation in cells, as shown by p38's phosphorylation. As evidenced by the loss of phosphorylation of p38, BMS-582949 treatment of cells in which p38 has been activated by LPS quickly reversed p38 activation. Inhibiting both p38 kinase activity and p38 activation in cells, BMS-582949 is a dual action p38 kinase inhibitor. By changing the conformation of the activation loop, which is phosphorylated by upstream kinases, BMS-582949 inhibits the phosphorylation of p38 by upstream MKK[2]. This is done by causing the activation loop to take on a less accessible conformation.
ln Vivo
BMS-582949 is cleared from mice at a rate of 4.4 mL/min/kg. The mouse AUC0-8 h for BMS-582949 is 75.5 μM•h at a 10 mg/kg oral dose. In mice and rats, BMS-582949 had oral bioavailability values of 90% and 60%, respectively[1].
Enzyme Assay
BMS-582949 was discovered to be 190-fold selective against Raf and 450-fold selective over Jnk2, a MAP kinase involved in inflammation. Further proof of BMS-582949's mode of binding to p38R was provided by X-ray crystallographic studies.
Cell Assay
BMS-582949 inhibits p38 kinase activity as well as p38 activation. When p38 is phosphorylated, BMS-582949 is found to inhibit p38 activation in cells. As evidenced by the loss of phosphorylation of p38, BMS-582949 treatment of cells in which p38 has been activated by LPS quickly reversed p38 activation.
Animal Protocol
Oral dose of 10 mg/kg
Mouse
References

[1]. Med Chem . 2010 Sep 23;53(18):6629-39.

[2]. Arthritis Rheum. 2010, 62 Suppl 10:1513.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H26N6O2
Molecular Weight
406.48
Exact Mass
406.21
Elemental Analysis
C, 65.01; H, 6.45; N, 20.68; O, 7.87
CAS #
623152-17-0
Related CAS #
BMS-582949 hydrochloride;912806-16-7
Appearance
Solid powder
SMILES
CCCNC(=O)C1=CN2C(=C1C)C(=NC=N2)NC3=C(C=CC(=C3)C(=O)NC4CC4)C
InChi Key
GDTQLZHHDRRBEB-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H26N6O2/c1-4-9-23-22(30)17-11-28-19(14(17)3)20(24-12-25-28)27-18-10-15(6-5-13(18)2)21(29)26-16-7-8-16/h5-6,10-12,16H,4,7-9H2,1-3H3,(H,23,30)(H,26,29)(H,24,25,27)
Chemical Name
4-[5-(cyclopropylcarbamoyl)-2-methylanilino]-5-methyl-N-propylpyrrolo[2,1-f][1,2,4]triazine-6-carboxamide;hydrochloride
Synonyms
PS540446; BMS-582949; BMS 582949; PS-540446; PS 540446; BMS582949; BMS582949 free base
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~81 mg/mL (~199.3 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4601 mL 12.3007 mL 24.6015 mL
5 mM 0.4920 mL 2.4601 mL 4.9203 mL
10 mM 0.2460 mL 1.2301 mL 2.4601 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00570752 Completed Other: Placebo
Drug: BMS-582949
Vascular Diseases Bristol-Myers Squibb December 2008 Phase 2
NCT00605735 Completed Drug: BMS-582949
Drug: Placebo
Rheumatoid Arthritis, NOS Bristol-Myers Squibb March 2008 Phase 2
NCT00399906 Completed Drug: BMS-582949
Drug: Placebo
Psoriasis Bristol-Myers Squibb August 2007 Phase 2
NCT00162292 Completed Drug: BMS-582949 and
Methotrexate
Rheumatoid Arthritis Bristol-Myers Squibb November 2005 Phase 1
Contact Us Back to top