yingweiwo

Benzylpenicillin

Alias: Galofak CilopenBenzylpenicillin Pradupen
Cat No.:V6592 Purity: ≥98%
Penicillin G is an effective penicillin antibiotic.
Benzylpenicillin
Benzylpenicillin Chemical Structure CAS No.: 61-33-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Benzylpenicillin:

  • Penicillin G Potassium
  • Penicillin G sodium
  • Streptomycin
  • Penicillin G procaine (PGP)
  • Penicillin G benzathine (Benzathine benzylpenicillin)
  • Penicillin G benzathine tetrahydrate
  • Penicillin G-d7 potassium (Benzylpenicillin-d7 (potassium salt))
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Penicillin G is an effective penicillin antibiotic. Penicillin G is used for bacterial infections.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Rapidly absorbed following both intramuscular and subcutaneous injection. Initial blood levels following parenteral administration are high but transient. Oral absorption in fasting, healthy humans is only about 15-30% as it is very susceptible to acid-catalyzed hydrolysis.
Penicillin G is eliminated by the kidneys. Nonrenal clearance includes hepatic metabolism and, to a lesser extent, biliary excretion.
0.53–0.67 L/kg in adults with normal renal function
560ml/min in healthy humans
...WIDELY DISTRIBUTED THROUGHOUT BODY... ITS APPARENT VOL OF DISTRIBUTION IS IN ABOUT 50% OF TOTAL BODY WATER. MORE THAN 90%...IN BLOOD IS IN PLASMA & LESS THAN 10% IS IN ERYTHROCYTES; APPROX 65% IS REVERSIBLY BOUND TO PLASMA ALBUMIN. LOW CONCN OF PROTEIN...LOW DEGREE OF BINDING...DRUG EFFICACY.
SIGNIFICANT AMT APPEAR IN LIVER, BILE, KIDNEY, SEMEN, LYMPH, & INTESTINE. ... PENICILLIN DOES NOT READILY ENTER CSF WHEN MENINGES ARE NORMAL.
ORAL DOSES OF 500 MG POTASSIUM PENICILLIN G TO HUMAN SUBJECTS RESULT IN URINARY CONCN OF 600 UG/ML, FOR 2 HR, & 300 UG/ML, FOR 4 HR AFTER DOSING. ... INEFFICIENT PLACENTAL TRANSFER IS CONSISTENT WITH LOW LIPID SOLUBILITY & LOW IONIZATION CONSTANT OF PENICILLIN G & THERE IS NO EVIDENCE OF PLACENTAL TRANSPORT.
...RAPIDLY ELIMINATED FROM BODY, MAINLY BY KIDNEY BUT IN SMALL PART IN BILE & BY OTHER CHANNELS. ... CLEARANCE VALUES ARE CONSIDERABLY LOWER IN NEONATES & INFANTS, BECAUSE OF INCOMPLETE DEVELOPMENT OF RENAL FUNCTION...
For more Absorption, Distribution and Excretion (Complete) data for PENICILLIN G (21 total), please visit the HSDB record page.
Metabolism / Metabolites
About 16-30% of an intramuscular dose is metabolized to penicilloic acid, an inactive metabolite. Small amounts of 6-aminopenicillanic acid have been recovered in the urine of patients on penicillin G. A small percentage of the drug appears to be hydroxylated into one or more active metabolites, which are also excreted via urine.
Approx 16-30% of an IM dose of penicillin G sodium is metabolized to penicilloic acid which is microbiologically inactive. Small amt of 6-aminopenicillanic acid (6-APA) have also been found in the urine of patients receiving penicillin G. In addition, the drug appears to be hydroxylated to a small extent to one or more microbiologically active metabolites which are also excreted in urine.
Biological Half-Life
In adults with normal renal function is reportedly 0.4–0.9 hours
ELIMINATION HALF-LIFE IS ABOUT 30 MIN IN NORMAL ADULTS.
PENICILLIN HALF-LIFE IN HUMAN SERUM INCR FROM ABOUT 25 MIN IN YOUNG ADULTS TO 2 HR IN ELDERLY SUBJECTS & IS ALSO MARKEDLY INCR BY DRUGS WHICH ARE ACTIVELY SECRETED BY KIDNEY TUBULES. /PENICILLIN/
The serum half-life of penicillin G in adults with normal renal function is reportedly 0.4-0.9 hr.
The serum half-life of penicillin G in neonates varies inversely with age and appears to be independent of birthweight. The serum half-life of the drug is reportedly 3.2-3.4 hr in neonates 6 days of age or younger, 1.2-2.2 hr in neonates 7-13 days of age, and 0.9-1.9 hr in neonates 14 days of age or older.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Limited information indicates that penicillin G produces low levels in milk that are not expected to cause adverse effects in breastfed infants. Occasionally disruption of the infant's gastrointestinal flora, resulting in diarrhea or thrush have been reported with penicillins, but these effects have not been adequately evaluated. Penicillin G is acceptable in nursing mothers.
◉ Effects in Breastfed Infants
A breastfed 1-month-old infant with congenital syphilis developed a Herxheimer reaction 6 hours after its mother received 2.4 million units of benzathine penicillin G intramuscularly. However, the baby had also received 10 units of penicillin G at about the same time as the mother's injection. The reaction was possibly caused by penicillin in breastmilk.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Bind to serum proteins (45-68%), mainly albumin.
Interactions
MARKED POTENTIATION OF HYPOPROTHROMBINEMIC EFFECT OF WARFARIN BY LARGE DOSES OF PARENTERAL PENICILLIN G DESCRIBED IN 49-YR-OLD MALE. PENICILLIN G CAUSED WARFARIN PROTEIN BINDING DISPLACEMENT INTERACTION.
Penicillins are generally inactivated in the presence of heat, alkaline or acid pH, oxidizing agents, alcohols, glycols, and metal ions such as copper, mercury, or zinc. In currently available penicillins, cleavage at any point in the penicillin nucleus, including the beta-lactam ring, results in complete loss of antibacterial activity. The major cause of inactivation of penicillins is hydrolysis of the beta-lactam ring. The course of hydrolysis and nature of the degradation products can vary and are generally influenced by pH. /Penicillins/
Penicillin G is potentially physically and/or chemically incompatible with some drugs, including aminoglycosides and tetracyclines, but the compatibility depends on several factors (eg, concn of the drugs, specific diluents used, resulting pH, temp).
Penicillins are generally inactivated in the presence of heat, alkaline or acid pH, oxidizing agents, alcohols, glycols, and metal ions such as copper, mercury, or zinc. In currently available penicillins, cleavage at any point in the penicillin nucleus, including the beta-lactam ring, results in complete loss of antibacterial activity. The major cause of inactivation of penicillins is hydrolysis of the beta-lactam ring. The course of hydrolysis and nature of the degradation products can vary and are generally influenced by pH. /Penicillins/
For more Interactions (Complete) data for PENICILLIN G (18 total), please visit the HSDB record page.
Additional Infomation
Therapeutic Uses
Convulsants; GABA Modulators; Penicillins
GINGIVOSTOMATITIS, PULMONARY INFECTIONS, & GENITAL DISEASE PRODUCED BY SYNERGISTIC ACTION OF FUSOBACTERIUM NUCLEATUM (FUSIFORM) & SPIROCHETES PRESENT IN RESPIRATORY TRACT ARE READILY TREATABLE WITH PENICILLIN. /PENICILLIN/
TWO MICROORGANISMS RESPONSIBLE FOR.../RAT-BITE FEVER/ ARE SENSITIVE TO PENICILLIN G. ...DRUG OF CHOICE IN MGMNT OF INFECTIONS DUE TO LIST MONOCYTOGENES... ONLY SPECIES OF PASTEURELLA HIGHLY SUSCEPTIBLE TO PENICILLIN IS PAST MULTOCIDA. ... CAUSATIVE AGENT OF /ERYSIPELOID/...IS SENSITIVE TO PENICILLIN.
PENICILLIN G THERAPY OF SYPHILIS IS ALMOST IDEALLY SAFE, INEXPENSIVE, & HIGHLY EFFECTIVE. ...AGENT OF CHOICE FOR TREATMENT OF ALL CLINICAL FORMS OF ACTINOMYCOSIS...ANTHRAX...GAS GANGRENE...
For more Therapeutic Uses (Complete) data for PENICILLIN G (35 total), please visit the HSDB record page.
Drug Warnings
WHEN MASSIVE DOSES OF PENICILLIN G SODIUM ARE USED, CONSIDERABLE SODIUM LOAD IS INTRODUCED, WHICH EXPANDS EXTRACELLULAR SPACE & MAY CAUSE EDEMA IN PT WITH HEART FAILURE. /PENICILLIN G SODIUM/
ALLERGIES CAN OCCUR TO PROCAINE COMPONENT, BUT OTHER TOXIC EFFECTS OF PROCAINE ARE VERY RARE. /PROCAINE/
ANURIA INCR HALF-LIFE OF PENICILLIN G FROM NORMAL VALUE OF 1/2 HR TO ABOUT 10 HR.
ALTHOUGH PENICILLIN G PREPN FOR INHALATION THERAPY & FOR TOPICAL APPLICATION TO SKIN & MUCOUS MEMBRANES ARE STILL AVAIL, THEIR USE IS NOT RECOMMENDED BECAUSE PROOF THAT THEY ARE ADEQUATELY EFFECTIVE IS LACKING, & BECAUSE THEY PRODUCE HIGH INCIDENCE OF HYPERSENSITIZATION.
For more Drug Warnings (Complete) data for PENICILLIN G (23 total), please visit the HSDB record page.
Pharmacodynamics
Penicillin G is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Penicillin G has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of penicillin G results from the inhibition of cell wall synthesis and is mediated through penicillin G binding to penicillin binding proteins (PBPs). Penicillin G is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H18N2O4S
Molecular Weight
334.4
Exact Mass
334.098
CAS #
61-33-6
Related CAS #
Penicillin G potassium;113-98-4;Penicillin G sodium salt;69-57-8;Streptomycin;57-92-1;Penicillin G procaine hydrate;6130-64-9;Penicillin G benzathine;1538-09-6;Penicillin G benzathine tetrahydrate;41372-02-5;Penicillin G-d7 potassium;352323-25-2
PubChem CID
5904
Appearance
AMORPHOUS WHITE POWDER
Density
1.4±0.1 g/cm3
Boiling Point
663.3±55.0 °C at 760 mmHg
Melting Point
214-217 °C
214 - 217 °C
Flash Point
355.0±31.5 °C
Vapour Pressure
0.0±2.1 mmHg at 25°C
Index of Refraction
1.655
LogP
1.67
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
4
Heavy Atom Count
23
Complexity
530
Defined Atom Stereocenter Count
3
SMILES
CC1([C@@H](N2C([C@@H](NC(CC3=CC=CC=C3)=O)[C@H]2S1)=O)C(O)=O)C
InChi Key
JGSARLDLIJGVTE-MBNYWOFBSA-N
InChi Code
InChI=1S/C16H18N2O4S/c1-16(2)12(15(21)22)18-13(20)11(14(18)23-16)17-10(19)8-9-6-4-3-5-7-9/h3-7,11-12,14H,8H2,1-2H3,(H,17,19)(H,21,22)/t11-,12+,14-/m1/s1
Chemical Name
(2S,5R,6R)-3,3-dimethyl-7-oxo-6-[(2-phenylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid
Synonyms
Galofak CilopenBenzylpenicillin Pradupen
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9904 mL 14.9522 mL 29.9043 mL
5 mM 0.5981 mL 2.9904 mL 5.9809 mL
10 mM 0.2990 mL 1.4952 mL 2.9904 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us