Size | Price | Stock | Qty |
---|---|---|---|
1g |
|
||
5g |
|
Purity: ≥98%
Targets |
Endogenous Metabolite
|
---|---|
ln Vitro |
When combined with LPS (1 μg/ml), ATP disodium salt hydrate (5 mM) for one hour had a synergistic effect on activating the NLRP3 inflammasome in HGFs[3]. In vitro, bone marrow derived macrophages (BMDMs) secrete interleukin 1β, KC, and MIP-2 in response to ATP disodium salt hydrate (2 mM; 0.5-24 hours) in a way that is dependent on caspase-1 activation[4]. In vitro neutrophil chemotaxis is both directly and indirectly induced by ATP disodium salt hydrate, which also stimulates the release of cytokines and chemokines as well as inflammasome activation[4].
|
ln Vivo |
Mice who receive 50 mg/kg of ATP disodium salt hydrate intraperitoneally are protected from bacterial infection[4]. ?In vivo neutrophil recruitment and the release of KC, MIP-2, and IL1β are induced by ATP disodium salt hydrate[4].
|
Enzyme Assay |
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues. [2]
|
Animal Protocol |
Animal/Disease Models: Fourweeks old Kunming mice (18-22 g)[4]
Doses: 50 mg/kg Route of Administration: intraperitoneal (ip)injection, before bacterial (E. coli) challenge Experimental Results: Protected mice from bacterial infection. |
References | |
Additional Infomation |
Since 1929, when it was discovered that ATP is a substrate for muscle contraction, the knowledge about this purine nucleotide has been greatly expanded. Many aspects of cell metabolism revolve around ATP production and consumption. It is important to understand the concepts of glucose and oxygen consumption in aerobic and anaerobic life and to link bioenergetics with the vast amount of reactions occurring within cells. ATP is universally seen as the energy exchange factor that connects anabolism and catabolism but also fuels processes such as motile contraction, phosphorylations, and active transport. It is also a signalling molecule in the purinergic signalling mechanisms. In this review, we will discuss all the main mechanisms of ATP production linked to ADP phosphorylation as well the regulation of these mechanisms during stress conditions and in connection with calcium signalling events. Recent advances regarding ATP storage and its special significance for purinergic signalling will also be reviewed. [1]
It has been established that Adenosine-5'-triphosphate (ATP) can activate the NLRP3 inflammasome. However, the physiological effect of extracellular ATP on NLRP3 inflammasome activation has not yet been investigated. In the present study, we found that ATP was indeed released during bacterial infection. By using a murine peritonitis model, we also found that ATP promotes the fight against bacterial infection in mice. ATP induced the secretion of IL-1β and chemokines by murine bone marrow-derived macrophages in vitro. Furthermore, the intraperitoneal injection of ATP elevated the levels of IL-1β and chemokines in the mouse peritoneal lavage. Neutrophils were rapidly recruited to the peritoneum after ATP injection. In addition, the effects on cytokine and chemokine secretion and neutrophil recruitment were markedly attenuated by the pre-administration of the caspase-1 inhibitor Ac-YVAD-cho. Ac-YVAD-cho also significantly attenuated the protective effect of ATP against bacterial infection. In the present study, we demonstrated a protective role for ATP during bacterial infection and this effect was related to NLRP3 inflammasome activation. Together, these results suggest a role for ATP in initiating the immune response in hosts suffering from infections. [4] |
Molecular Formula |
C10H16N5NA2O14P3
|
---|---|
Molecular Weight |
569.160
|
Exact Mass |
568.97
|
Elemental Analysis |
C, 21.10; H, 2.83; N, 12.30; Na, 8.08; O, 39.35; P, 16.33
|
CAS # |
34369-07-8
|
Related CAS # |
ATP disodium salt;987-65-5;ATP disodium trihydrate;51963-61-2;ATP dimagnesium;74804-12-9;ATP-13C10,15N5 disodium;ATP disodium salt hydrate;34369-07-8;ATP dipotassium;42373-41-1;ATP ditromethamine;102047-34-7;ATP-13C10,15N5;752972-20-6
|
PubChem CID |
16218877
|
Appearance |
White to off-white solid powder
|
SMILES |
O[C@@H]([C@H]([C@H](N1C=NC2=C(N=CN=C21)N)O3)O)[C@H]3COP([O-])(OP(O)(OP([O-])(O)=O)=O)=O.[H]O[H].[Na+].[Na+]
|
InChi Key |
NTBQNWBHIXNPRU-MSQVLRTGSA-L
|
InChi Code |
InChI=1S/C10H16N5O13P3.2Na.H2O/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19)20;;;/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20);;;1H2/q;2*+1;/p-2/t4-,6-,7-,10-;;;/m1.../s1
|
Chemical Name |
O[C@@H]([C@H]([C@H](N1C=NC2=C(N=CN=C21)N)O3)O)[C@H]3COP([O-])(OP(O)(OP([O-])(O)=O)=O)=O.[H]O[H].[Na+].[Na+]
|
Synonyms |
34369-07-8; ATP disodium salt; ATP disodium salt hydrate; Adenosine 5'-triphosphate disodium salt hydrate; MFCD00150755; Adenosine 5'-triphosphate disodium salt hydrate; disodium;[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-oxidophosphoryl] hydrogen phosphate;hydrate; ATP (disodium salt hydrate);
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~100 mg/mL
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 100 mg/mL (Infinity mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
 (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.7570 mL | 8.7849 mL | 17.5698 mL | |
5 mM | 0.3514 mL | 1.7570 mL | 3.5140 mL | |
10 mM | 0.1757 mL | 0.8785 mL | 1.7570 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.