ATI-2341

Alias: ATI2341; ATI 2341; ATI-2341
Cat No.:V2585 Purity: ≥98%
ATI-2341 (ATI2341), a pepducin targeting the C-X-C chemokine receptor type 4 (CXCR4), is a novel and selective allosteric agonist of CXCR4 with anti-inflammatory and anticancer activity.
ATI-2341 Chemical Structure CAS No.: 1337878-62-2
Product category: CXCR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

ATI-2341 (ATI2341), a pepducin targeting the C-X-C chemokine receptor type 4 (CXCR4), is a novel and selective allosteric agonist of CXCR4 with anti-inflammatory and anticancer activity. It causes the production of cAMP to be inhibited and calcium mobilization to be induced by activating the inhibitory heterotrimeric G protein (Gi). In CXCR4-HEK cells, ATI-2341 could dose-dependently block NKH477-induced cAMP accumulation, but it had no effect on HEK-293 parental cells that were naive. The ability of ATI-2341 to inhibit cAMP accumulation was totally eliminated when CXCR4-HEK cells were pretreated with pertussis toxin. In addition, ATI-2341 may cause a dose-dependent rise in intracellular calcium in wild-type CXCR4-transfected cells while having no effect on untransfected cells.

Biological Activity I Assay Protocols (From Reference)
Targets
CXCR4 ( EC50 = 194 nM )
ln Vitro

In vitro activity: ATI-2341 triggers receptor internalization, chemotaxis, and signaling that is dependent on CXCR4 and G proteins in CXCR4-expressing cells. At 194 ± 16 nM for EC50 and 81 ± 4% for intrinsic activity, it is the most powerful agonist. As a strong and effective mobilizer of hematopoietic stem and progenitor cells (HSPCs) and bone marrow PMNs (polymorphonuclear neutrophils), ATI-2341 may offer a therapeutic strategy for HSPC recruitment prior to autologous bone marrow transplantation that has not yet been published. CCRF-CEM cells can undergo chemotaxis in response to ATI-2341, which causes the bell-shaped curve that is commonly seen in response to chemotactic agents[1].

ln Vivo
In BALB/c mice, intraperitoneal (i.p.) injection of ATI-2341 causes a dose-dependent recruitment of PMNs into the peritoneum, with a maximum effect observed at 405 nmol/kg. Reduction in recruitment is the result of increasing the concentration of ATI-2341; this is similar to the bell-shaped curve commonly observed with chemotactic agents. When mice are given ATI-2341 intravenously (i.v.), the amount of PMNs in the peripheral circulation increases in a dose-dependent manner; this increase is observed 90 minutes after the compound is administered. At 0.66 μmol/kg of ATI-2341, the effect reaches its maximum. At every tested dosage, ATI-2341 has no effect on lymphocyte mobilization[1].
Enzyme Assay
ATI-2341 is a potent and functionally selective allosteric agonist of C-X-C chemokine receptor type 4 (CXCR4), acting as a biased ligand that prefers Gαi activation over Gα13. ATI-2341 activates the inhibitory heterotrimeric G protein (Gi) to encourage the inhibition of cAMP production and to cause calcium mobilization.
Cell Assay
CXCR4-eGFP receptors are transiently transfected into HEK-293 cells, and 24 hours after transfection, the cells are plated on poly-D-lysine-coated glass coverslips. The cells are treated with either vehicle alone or different concentrations of ATI-2341 for 30 minutes at 37 degrees Celsius the following day. They are then fixed with methanol for 5 minutes at -20 degrees Celsius. An inverted Zeiss Axiovert microscope is used to directly visualize GFP fluorescence. Adobe Illustrator and Photoshop are used for image processing.
Animal Protocol
Formulated in Endotoxin-free water; 300 nmol/kg; i.p. injection
BALB/c mice
References

[1]. Proc Natl Acad Sci U S A . 2010 Dec 21;107(51):22255-9.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C104H178N26O25S2
Molecular Weight
2256.82
Exact Mass
2256.29
CAS #
1337878-62-2
Related CAS #
ATI-2341 TFA
SMILES
CCCCCCCCCCCCCCCC(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](CC(C)C)C(=O)O
InChi Key
YMLOFEANRZSEGQ-QNHYGVTPSA-N
InChi Code
InChI=1S/C104H178N26O25S2/c1-9-10-11-12-13-14-15-16-17-18-19-20-21-35-84(136)116-75(46-53-156-7)88(140)115-60-85(137)117-78(57-65-36-40-67(133)41-37-65)97(149)123-74(44-45-83(108)135)94(146)119-69(30-22-25-48-105)89(141)118-70(31-23-26-49-106)90(142)125-77(55-62(2)3)96(148)121-73(34-29-52-114-104(111)112)93(145)129-82(61-131)100(152)124-76(47-54-157-8)95(147)130-87(64(6)132)101(153)127-80(59-86(138)139)99(151)120-71(32-24-27-50-107)91(143)126-79(58-66-38-42-68(134)43-39-66)98(150)122-72(33-28-51-113-103(109)110)92(144)128-81(102(154)155)56-63(4)5/h36-43,62-64,69-82,87,131-134H,9-35,44-61,105-107H2,1-8H3,(H2,108,135)(H,115,140)(H,116,136)(H,117,137)(H,118,141)(H,119,146)(H,120,151)(H,121,148)(H,122,150)(H,123,149)(H,124,152)(H,125,142)(H,126,143)(H,127,153)(H,128,144)(H,129,145)(H,130,147)(H,138,139)(H,154,155)(H4,109,110,113)(H4,111,112,114)/t64-,69+,70+,71+,72+,73+,74+,75+,76+,77+,78+,79+,80+,81+,82+,87+/m1/s1
Chemical Name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[2-[[(2S)-2-(hexadecanoylamino)-4-methylsulfanylbutanoyl]amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-oxopentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-3-hydroxybutanoyl]amino]-3-carboxypropanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoic acid
Synonyms
ATI2341; ATI 2341; ATI-2341
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~44.3 mM)
Water: <1 mg/mL
Ethanol: ~2 mg/mL (~0.9 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.4431 mL 2.2155 mL 4.4310 mL
5 mM 0.0886 mL 0.4431 mL 0.8862 mL
10 mM 0.0443 mL 0.2216 mL 0.4431 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Identification and characterization of the CXCR4 agonist, ATI-2341. Proc Natl Acad Sci U S A . 2010 Dec 21;107(51):22255-9.
  • In vivo agonist activity of ATI-2341. Proc Natl Acad Sci U S A . 2010 Dec 21;107(51):22255-9.
  • ATI-2341 induces mobilization of PMNs and CFU-GM but not lymphocytes. Proc Natl Acad Sci U S A . 2010 Dec 21;107(51):22255-9.
  • ATI-2341 induces PMN mobilization of PMNs but not lymphocytes in non-human primates. Proc Natl Acad Sci U S A . 2010 Dec 21;107(51):22255-9.
Contact Us Back to top