yingweiwo

(Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base)

Alias: 354812-41-2; (Rac)-Moxifloxacin; CID 4259; 1-cyclopropyl-6-fluoro-8-methoxy-7-(octahydro-6h-pyrrolo[3,4-b]pyridin-6-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid; 7-(1,2,3,4,4a,5,7,7a-octahydropyrrolo[3,4-b]pyridin-6-yl)-1-cyclopropyl-6-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid; 1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4 -oxo-quinoline-3-carboxylic acid; 158060-78-7; 1-CYCLOPROPYL-7-(2,8-DIAZABICYCLO[4.3.0]NON-8-YL)-6-FLUORO-8-METHOXY-4-OXOQUINOLINE-3-CARBOXYLIC ACID;
Cat No.:V34750 Purity: ≥98%
(Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base) is an isomer of Moxifloxacin HCl;
(Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base)
(Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base) Chemical Structure CAS No.: 354812-41-2
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes

Other Forms of (Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base):

  • Moxifloxacin HCl (BAY12-8039)
  • Moxifloxacin (BAY12-8039)
  • Moxifloxacin-d4 (BAY 12-8039-d4 free base)
  • Moxifloxacin-d3 hydrochloride (BAY 12-8039-d3)
  • Moxifloxacin-d3-1 hydrochloride (moxifloxacin hydrochloride-d3; BAY 12-8039-d3-1)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(Rac)-Moxifloxacin ((Rac)-BAY 12-8039 free base) is an isomer of Moxifloxacin HCl . Moxifloxacin HCl (BAY 12-8039) is an orally bioactive 8-methoxyquinolone antibacterial active molecule, utilized in the research of acute bacterial sinusitis, acute bacterial exacerbation of chronic bronchitis and infectious pneumonia.
Biological Activity I Assay Protocols (From Reference)
Targets
Topoisomerase
ln Vitro
Using a bone marrow-derived mouse macrophage model infected with Listeria, time-kill curve and intracellular growth inhibition tests were used to compare the in vitro actions of moxifloxacin hydrochloride (BAY 12-8039) and amoxicillin. EGDe mononucleosis. Moxifloxacin works more quickly; it begins to work during the first three hours of incubation and completely sterilizes the broth in about twenty-four hours. Numerous cells continue to exist during a 24-hour incubation period, suggesting that doxifloxacin may have a protective effect against macrophage lysis [3].
ln Vivo
Treatment every 8 hours with doxifloxacin (BAY 12-8039; 12 mg/kg; intravenously administered; once to three times daily; 7 days; white male Wistar rats) increased survival. Thirty hours after the bacterial challenge, tissue culture revealed no toxicity and much reduced bacterial overgrowth in the lungs and spleen of moxifloxacin-treated animals than saline-treated animals [4].
Cell Assay
Bacterial strains.[2]
Antimicrobial susceptibility to moxifloxacin was determined for a representative selection of the collection strains from the French National Reference Centre for Listeria. The strains studied included Listeria type strains and L. monocytogenes serovar reference strains (n = 16) (see Table S1 in the supplemental material), L. monocytogenes strains isolated from humans in 2005 (n = 205), a set of randomly selected L. monocytogenes strains isolated from food and the environment in 2005 (n = 183), and L. monocytogenes strains resistant to ciprofloxacin isolated from humans since 2000 (n = 8).
Susceptibility testing.[2]
The MICs of moxifloxacin and ciprofloxacin were determined by the Etest procedure (AB Biodisk, Solna, Sweden), according to the guidelines of the Antibiogram Committee of the French Society for Microbiology. To the best of our knowledge, there are no interpretative criteria for moxifloxacin and L. monocytogenes from any breakpoint committee (CA-SFM, EUCAST, and CLSI). The isolates were categorized as susceptible, intermediate, or resistant according to the following breakpoints: 1 μg/ml ≤ MIC > 2 μg/ml.
Time-kill curves.[2]
The in vitro bactericidal activities of moxifloxacin and moxifloxacin were determined against a virulent strain of L. monocytogenes (strain EGDe) (11). Five milliliters of Mueller-Hinton (MH) broth was inoculated with 5 × 108 bacteria, and the mixture was incubated at 37°C. Moxifloxacin and amoxicillin were added to the MH broth suspension at various concentrations: 1× MIC, 4× MIC, 8× MIC, or 400× MIC. The last two concentrations correspond to the maximum serum concentration (Cmax) after the administration of clinically relevant doses of moxifloxacin and amoxicillin to humans, respectively (31). Bacterial counts were determined in triplicate at the indicated times of incubation with antibiotics by subculturing 10 μl of serial 10-fold dilutions of the MH broth suspension on brain heart infusion agar plates and on BHI agar supplemented with 2 μg/ml of moxifloxacin and incubation for 48 h. The results were expressed as the number of CFU per milliliter and corresponded to the means ± standard errors from three experiments. Bactericidal activity was defined as the killing of more than 99.9% of the initial inoculum after 24 h of incubation (i.e., a ≥3-log10 CFU/ml decrease in viable counts). The killing rate was defined as the decrease in the initial inoculum within the first 3 h.
Animal Protocol
In order to investigate the effect of moxifloxacin on survival, lipid peroxidation and inflammation in immunosuppressed rats with soft tissue infection caused by Stenotrophomonas maltophilia, 144 white male Wistar rats were randomized into six groups: Groups A and B received saline or moxifloxacin once per day, respectively; Groups C and D received saline or moxifloxacin twice per day, respectively, and Groups E and F received saline or moxifloxacin three times per day, respectively. Blood samples were taken at 6 and 30 hr after administration of S. maltophilia. Malonodialdehyde (MDA), WBC counts, bacterial tissue overgrowth, serum concentrations of moxifloxacin and survival were assessed. Survival analysis proved that treatment with moxifloxacin every 8 hr was accompanied by longer survival than occurred in any other group. Tissue cultures 30 hr after bacterial challenge showed considerably less bacterial overgrowth in the spleens and lungs of moxifloxacin-treated than in salinetreated animals, but not in their livers. At 6 hr there were no statistically significant differences between groups. However, at 30 hr, MDA concentrations were significantly greater (P = 0.044) and WBC counts significantly lower (P = 0.026) in group D than in group C. No statistically significant variations were observed between the other groups. Moxifloxacin possibly stimulates lipid peroxidation and enhances phagocytosis, as indicated by MDA production and survival prolongation, without being toxic, as indicated by WBC count. Therefore, under the appropriate conditions, moxifloxacin has a place in treatment of infections in immunosuppressed patients and of infections caused by S. maltophilia.[4]
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of moxifloxacin during breastfeeding. Fluoroquinolones have traditionally not been used in infants because of concern about adverse effects on the infants' developing joints. However, recent studies indicate little risk. The calcium in milk might prevent absorption of the small amounts of fluoroquinolones in milk, but insufficient data exist to prove or disprove this assertion. Use of moxifloxacin is acceptable in nursing mothers with monitoring of the infant for possible effects on the gastrointestinal flora, such as diarrhea or candidiasis (thrush, diaper rash). However, it is preferable to use an alternate drug for which safety information is available.
Maternal use of an eye drop that contains moxifloxacin presents negligible risk for the nursing infant. To substantially diminish the amount of drug that reaches the breastmilk after using eye drops, place pressure over the tear duct by the corner of the eye for 1 minute or more, then remove the excess solution with an absorbent tissue.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
References
[1]. Culley CM, et al. Moxifloxacin: clinical efficacy and safety. Am J Health Syst Pharm. 2001 Mar 1;58(5):379-88.
[2]. Balfour JA, et al. Moxifloxacin: a review of its clinical potential in the management of community-acquired respiratory tract infections. Drugs. 2000 Jan;59(1):115-39.
[3]. Grayo S, et al. Comparison of the in vitro efficacies of moxifloxacin and amoxicillin against Listeria monocytogenes. Antimicrob Agents Chemother. 2008 May;52(5):1697-702.
[4]. Ioannidis O, et al. Effect of moxifloxacin on survival, lipid peroxidation and inflammation in immunosuppressed rats with soft tissue infection caused by Stenotrophomonas maltophilia. Microbiol Immunol. 2014 Feb;58(2):96-102.
Additional Infomation
Moxifloxacin hydrochloride is a hydrochloride comprising equimolar amounts of moxifloxacin and hydrogen chloride. It has a role as an antibacterial drug. It contains a moxifloxacinium(1+).
Moxifloxacin hydrochloride is an antibacterial prescription medicine approved by the U.S. Food and Drug Administration (FDA) for the treatment of certain bacterial infections, such as community-acquired pneumonia, acute worsening of chronic bronchitis, acute sinus infections, plague, and skin and abdominal infections.
Community-acquired pneumonia, a bacterial respiratory infection, can be an opportunistic infection (OI) of HIV.
Moxifloxacin Hydrochloride is the hydrochloride salt of a fluoroquinolone antibacterial antibiotic. Moxifloxacin binds to and inhibits the bacterial enzymes DNA gyrase (topoisomerase II) and topoisomerase IV, resulting in inhibition of DNA replication and repair and cell death in sensitive bacterial species.
A fluoroquinolone that acts as an inhibitor of DNA TOPOISOMERASE II and is used as a broad-spectrum antibacterial agent.
See also: Moxifloxacin (has active moiety).
Drug Indication
Acute Exacerbation of Chronic Bronchitis, Community Acquired Pneumonia, Complicated Intra-Abdominal Infection, Complicated Skin and Skin Structure Infections, Pelvic Inflammatory Disease, Treatment of acute bacterial sinusitis
Acute Exacerbation of Chronic Bronchitis, Community Acquired Pneumonia, Complicated Intra-Abdominal Infection, Complicated Skin and Skin Structure Infections, Pelvic Inflammatory Disease, Treatment of acute bacterial sinusitis
Acute Exacerbation of Chronic Bronchitis, Community Acquired Pneumonia, Complicated Intra-Abdominal Infection, Complicated Skin and Skin Structure Infections, Pelvic Inflammatory Disease, Treatment of acute bacterial sinusitis
Acute Exacerbation of Chronic Bronchitis, Community Acquired Pneumonia, Complicated Intra-Abdominal Infection, Complicated Skin and Skin Structure Infections, Pelvic Inflammatory Disease, Treatment of acute bacterial sinusitis
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H24FN3O4
Molecular Weight
401.43
Exact Mass
401.175
Elemental Analysis
C, 62.83; H, 6.03; F, 4.73; N, 10.47; O, 15.94 C, 62.83; H, 6.03; F, 4.73; N, 10.47; O, 15.94
CAS #
354812-41-2
Related CAS #
Moxifloxacin Hydrochloride;186826-86-8;Moxifloxacin;151096-09-2;Moxifloxacin-d4;2596386-23-9;Moxifloxacin-d3 hydrochloride;2734919-98-1;Moxifloxacin-d3-1 hydrochloride;1246816-75-0;Moxifloxacin-13C,d3 hydrochloride
PubChem CID
101526
Appearance
Typically exists as Off-white to yellow solid at room temperatureOff-white to yellow
Density
1.409 g/cm3
Boiling Point
636.382ºC at 760 mmHg
Flash Point
338.672ºC
LogP
2.764
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
4
Heavy Atom Count
30
Complexity
727
Defined Atom Stereocenter Count
2
SMILES
C1(N2C3C(=CC(F)=C(N4CC5C(NCCC5)C4)C=3OC)C(=O)C(C(O)=O)=C2)CC1
InChi Key
IDIIJJHBXUESQI-DFIJPDEKSA-N
InChi Code
InChI=1S/C21H24FN3O4.ClH/c1-29-20-17-13(19(26)14(21(27)28)9-25(17)12-4-5-12)7-15(22)18(20)24-8-11-3-2-6-23-16(11)10-24;/h7,9,11-12,16,23H,2-6,8,10H2,1H3,(H,27,28);1H/t11-,16+;/m0./s1
Chemical Name
7-[(4aS,7aS)-1,2,3,4,4a,5,7,7a-octahydropyrrolo[3,4-b]pyridin-6-yl]-1-cyclopropyl-6-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid;hydrochloride
Synonyms
354812-41-2; (Rac)-Moxifloxacin; CID 4259; 1-cyclopropyl-6-fluoro-8-methoxy-7-(octahydro-6h-pyrrolo[3,4-b]pyridin-6-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid; 7-(1,2,3,4,4a,5,7,7a-octahydropyrrolo[3,4-b]pyridin-6-yl)-1-cyclopropyl-6-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid; 1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4 -oxo-quinoline-3-carboxylic acid; 158060-78-7; 1-CYCLOPROPYL-7-(2,8-DIAZABICYCLO[4.3.0]NON-8-YL)-6-FLUORO-8-METHOXY-4-OXOQUINOLINE-3-CARBOXYLIC ACID;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4911 mL 12.4555 mL 24.9109 mL
5 mM 0.4982 mL 2.4911 mL 4.9822 mL
10 mM 0.2491 mL 1.2455 mL 2.4911 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05660720 Active
Recruiting
Drug: Orelabrutinib and placebo
(orelabrutinib tablet simulator)
Drug: Orelabrutinib
Healthy Subject Beijing InnoCare Pharma Tech
Co., Ltd.
November 19, 2022 Phase 1
NCT05924815 Active
Recruiting
Drug: Aficamten
Drug: Moxifloxacin
Healthy Participants Cytokinetics May 15, 2023 Phase 1
NCT03236961 Active
Recruiting
Drug: Ertapenem
Drug: Moxifloxacin
Acute Appendicitis Turku University Hospital April 3, 2017 Not Applicable
NCT05878522 Active
Recruiting
Drug: moxifloxacin
Drug: placebo
Healthy Pfizer May 15, 2023 Phase 1
NCT04179500 Active
Recruiting
Drug: moxifloxacin
Drug: pyrazinamide
Tuberculosis, MDR
Tuberculosis
Global Alliance for TB Drug
Development
September 16, 2021 Phase 2
Contact Us