yingweiwo

Kurarinol (matrine alcohol)

Alias: Kurarinol; 855746-98-4; CHEBI:81093; (2S)-2-(2,4-Dihydroxyphenyl)-7-hydroxy-8-[(2R)-5-hydroxy-5-methyl-2-prop-1-en-2-ylhexyl]-5-methoxy-2,3-dihydrochromen-4-one; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-[(2R)-5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl]-5-methoxy-2,3-dihydro-4H-1-benzopyran-4-one; 4'',5''-Dihydro-5''-hydroxysophoraflavanone G 5-methyl ether; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-((2R)-5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl)-5-methoxy-2,3-dihydro-4H-1-benzopyran-4-one; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-((2R)-5-hydroxy-5-methyl-2-prop-1-en-2-ylhexyl)-5-methoxy-2,3-dihydrochromen-4-one;
Cat No.:V51893 Purity: ≥98%
Kurarinol is a flavanone found in Sophora flavescens roots.
Kurarinol (matrine alcohol)
Kurarinol (matrine alcohol) Chemical Structure CAS No.: 855746-98-4
Product category: Apoptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Kurarinol is a flavanone found in Sophora flavescens roots. Kurarinol is a competitive tyrosinase inhibitor (antagonist) with IC50 of 0.1 μM for mushroom-type tyrosinase.
Biological Activity I Assay Protocols (From Reference)
Targets
Mushroom tyrosinase (IC50 = 0.1 μM)
ln Vitro
Kurarinol's cytotoxic action is rather low (EC50>30 μM)[1]. Kurarinol prevents S. from producing melanin. bikiniensis without interfering with microbial growth[1]. Kurarinol inhibits cellular signal transducer and activator of transcription 3 signaling (STAT3), which causes hepatocellular carcinoma cells to undergo apoptosis[2].
ln Vivo
Kurarinol (20 mg/kg; po; daily; for 3 days) lowers serum lipid levels in rats that have been made hyperlipidemic by a high-cholesterol diet[3]
In this study, we investigated the hypolipidemic effects of Sophora flavescens in poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. The MeOH extract and 4 fractions of S. flavescens were administered at doses of 250 and 100 mg/kg body weight, respectively, once a day for 3 d to the poloxamer 407-induced hyperlipidemic rats. Serum lipid levels such as total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C) were markedly elevated in the poloxamer 407-induced hyperlipidemic control rats, while lipid levels were significantly decreased in the rats administered the MeOH extract or 4 fractions of S. flavescens. In addition, serum high-density lipoprotein-cholesterol (HDL-C) was reduced in the poloxamer 407-induced hyperlipidemic control rats. However, oral administration of both the MeOH extract and 4 fractions significantly increased HDL-C levels. Of the tested fractions, the EtOAc fraction showed the strongest lipid-lowering effect, as well as a high antiatherogenic potential with atherogenic index (A.I.) values of less than 1.92. We also investigated the hypolipidemic effects of the main compounds of the EtOAc fraction, kurarinol and kuraridinol, using the hyperlipidemic and hypercholesterolemic animal models. Here, elevated TC, TG, and LDL-C levels in the poloxamer 407-induced hyperlipidemic and cholesterol-fed rats were significantly reduced after oral administration of the compounds, and HDL-C levels had a significant increase. Furthermore, A.I. values were lowered by administering kurarinol and kuraridinol. In particular, kuraridinol exhibited stronger protective activities against hyperlipidemia than kurarinol. These results suggest that S. flavescens and its constituents may be effective cholesterol-lowering agents and useful for preventing hypercholesterolemic atherosclerosis[3].
Enzyme Assay
It is well known that flavanones, sophoraflavanone G 1, kurarinone 2, and kurarinol 3, from the root of Sophora flavescens, have extremely strong tyrosinase inhibitory activity. This study delineates the principal pharmacological features of kurarinol 3 that lead to inhibition of the oxidation of l-tyrosine to melanin by mushroom tyrosinase (IC(50) of 100 nM). The inhibition kinetics analyses unveil that compounds 1 and 2 are noncompetitive inhibitors. However similar analysis shows kurarinol 3 to be a competitive inhibitor. Compounds 1 and 2 exhibited potent antibacterial activity with 10 microg/disk against Gram-positive bacteria, whereas kurarinol 3 did not ostend any antibacterial activity. Interestingly, kurarinol 3 inhibits production of melanin in S. bikiniensis without affecting the growth of microorganism. It is thus distinctly different from the other tyrosinase inhibitors 1 and 2. In addition, kurarinol 3 manifests relatively low cytotoxic activity (EC(50)>30 microM) compared to 1 and 2. To account for these observations, we conducted molecular modeling studies. These suggested that the lavandulyl group within 3 is instrumental in the interaction with the enzyme. More specifically, the terminal hydroxy function within the lavandulyl group is most important for optimal binding [1].
Cell Assay
Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis[2].
Animal Protocol
Animal/Disease Models: Male SD (Sprague-Dawley) rats (120-130g), hypercholesterolemic models[3]
Doses: 20 mg/kg
Route of Administration: Oral administration, daily, for 3 days
Experimental Results: diminished serum TC, TG, and LDL-C levels.
References

[1]. Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens. Phytomedicine. 2008 Aug;15(8):612-8.

[2]. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling. Toxicol Appl Pharmacol. 2014 Dec 1;281(2):157-65.

[3]. Hypolipidemic effects of Sophora flavescens and its constituents in poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Biol Pharm Bull. 2008 Jan;31(1):73-8.

Additional Infomation
Kurarinol is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2' and 4' , a methoxy group at position 5 and a (2S)-5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl group at position 8 respectively. It has a role as an anti-inflammatory agent, an antioxidant and a plant metabolite. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4'-hydroxyflavanones. It is functionally related to a (2S)-flavanone.
Kurarinol has been reported in Albizia julibrissin and Sophora flavescens with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H32O7
Molecular Weight
456.53
Exact Mass
456.215
CAS #
855746-98-4
PubChem CID
44563198
Appearance
Typically exists as solid at room temperature
LogP
4.804
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
8
Heavy Atom Count
33
Complexity
692
Defined Atom Stereocenter Count
2
SMILES
C(C1C(O)=CC(OC)=C2C(C[C@@H](C3C=CC(O)=CC=3O)OC=12)=O)[C@H](C(=C)C)CCC(O)(C)C
InChi Key
XMUPAAIHKAIUSU-QRQCRPRQSA-N
InChi Code
InChI=1S/C26H32O7/c1-14(2)15(8-9-26(3,4)31)10-18-20(29)12-23(32-5)24-21(30)13-22(33-25(18)24)17-7-6-16(27)11-19(17)28/h6-7,11-12,15,22,27-29,31H,1,8-10,13H2,2-5H3/t15-,22+/m1/s1
Chemical Name
(2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-[(2R)-5-hydroxy-5-methyl-2-prop-1-en-2-ylhexyl]-5-methoxy-2,3-dihydrochromen-4-one
Synonyms
Kurarinol; 855746-98-4; CHEBI:81093; (2S)-2-(2,4-Dihydroxyphenyl)-7-hydroxy-8-[(2R)-5-hydroxy-5-methyl-2-prop-1-en-2-ylhexyl]-5-methoxy-2,3-dihydrochromen-4-one; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-[(2R)-5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl]-5-methoxy-2,3-dihydro-4H-1-benzopyran-4-one; 4'',5''-Dihydro-5''-hydroxysophoraflavanone G 5-methyl ether; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-((2R)-5-hydroxy-5-methyl-2-(prop-1-en-2-yl)hexyl)-5-methoxy-2,3-dihydro-4H-1-benzopyran-4-one; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-8-((2R)-5-hydroxy-5-methyl-2-prop-1-en-2-ylhexyl)-5-methoxy-2,3-dihydrochromen-4-one;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1904 mL 10.9522 mL 21.9044 mL
5 mM 0.4381 mL 2.1904 mL 4.3809 mL
10 mM 0.2190 mL 1.0952 mL 2.1904 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us