Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
ln Vitro |
In Madin-Darby canine kidney (MDCK) cells, goitrin (0.1–1 μM; 72 h) demonstrates dose-dependent anti–influenza virus (H1N1) action, with an IC50 of 0.19 μM[3].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
A total of six cows, divided into 3 groups, were fed various amounts of rape cake containing 6 g of goitrin/kg over a period of 7 days. The cows were milked twice a day ... . When rape cake was fed at 0.39, 1.9 and 3.9% resp. of the total feed this resulted in medium goitrin values of 37, 163 and 707 ug/l milk. These values correspond to a transfer of about 0.1% of the original progoitrin content in the feed. 12 h after the last rape feeding the amount of goitrin in the milk was below the detection limit of 7 ppb. |
Toxicity/Toxicokinetics |
Interactions
Goitrin is a potent goitrogen that has been shown to induce glutathione S-transferase (GST) activity and to increase aflatoxin detoxification. goitrin --a naturally occurring compound in cruciferous vegetables and rape--could be easily nitrosated by treatment with nitrite under stomach conditions, yielding with loss of sulfur the N-nitroso- oxazolidone 4. This product has a mutagenicity pattern and potency similar to that of N-nitroso-N-methyl-N'- nitroguanidine (MNNG) in the Ames Salmonella/mammalian microsome test. |
References |
|
Additional Infomation |
(S)-goitrin is a 5-ethenyl-1,3-oxazolidine-2-thione that has S-configuration. It is a constituent of a traditional Chinese herbal medicine, Radix isatidis. It has a role as an antiviral agent, a plant metabolite and an antithyroid drug. It is an enantiomer of a (R)-goitrin.
Goitrin has been reported in Brassica oleracea, Crambe kotschyana, and other organisms with data available. Mechanism of Action A wide variety of chemicals, drugs, and other xenobiotics affect the second step in thyroid hormone biosynthesis. The stepwise binding of iodide to the tyrosyl residues in thyroglobulin requires oxidation of inorganic iodide (I2) to molecular (reactive) iodine (I2) by the thyroid peroxidase present in the luminal aspect (microvillar membranes) of follicular cells and adjacent colloid. Classes of chemicals that inhibit the organification of thyroglobulin include ... the thionamides (such as ... goitrin)... . |
Molecular Formula |
C5H7NOS
|
---|---|
Molecular Weight |
129.18
|
Exact Mass |
129.025
|
CAS # |
500-12-9
|
Related CAS # |
Epigoitrin;1072-93-1
|
PubChem CID |
7568320
|
Appearance |
Large prisms from ether
|
Melting Point |
50 °C
|
LogP |
0.774
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
1
|
Heavy Atom Count |
8
|
Complexity |
124
|
Defined Atom Stereocenter Count |
1
|
SMILES |
C=CC1CNC(=S)O1
|
InChi Key |
UZQVYLOFLQICCT-BYPYZUCNSA-N
|
InChi Code |
InChI=1S/C5H7NOS/c1-2-4-3-6-5(8)7-4/h2,4H,1,3H2,(H,6,8)/t4-/m0/s1
|
Chemical Name |
(5S)-5-ethenyl-1,3-oxazolidine-2-thione
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 7.7411 mL | 38.7057 mL | 77.4114 mL | |
5 mM | 1.5482 mL | 7.7411 mL | 15.4823 mL | |
10 mM | 0.7741 mL | 3.8706 mL | 7.7411 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.