Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Human Endogenous Metabolite
|
---|---|
ADME/Pharmacokinetics |
Metabolism / Metabolites
Hepatic. Debrisoquine has known human metabolites that include 4-Hydroxydebrisoquine. |
References | |
Additional Infomation |
Debrisoquin is a member of isoquinolines and a carboxamidine. It has a role as an antihypertensive agent, an adrenergic agent, a sympatholytic agent and a human metabolite.
An adrenergic neuron-blocking drug similar in effects to guanethidine. It is also noteworthy in being a substrate for a polymorphic cytochrome P-450 enzyme. Persons with certain isoforms of this enzyme are unable to properly metabolize this and many other clinically important drugs. They are commonly referred to as having a debrisoquin 4-hydroxylase polymorphism. Debrisoquine has been reported in Homo sapiens and Euglena gracilis with data available. An adrenergic neuron-blocking drug similar in effects to GUANETHIDINE. It is also noteworthy in being a substrate for a polymorphic cytochrome P-450 enzyme. Persons with certain isoforms of this enzyme are unable to properly metabolize this and many other clinically important drugs. They are commonly referred to as having a debrisoquin 4-hydroxylase polymorphism. Drug Indication For the treatment of moderate and severe hypertension, either alone or as an adjunct, and for the treatment of renal hypertension. Mechanism of Action Debrisoquin acts at the sympathetic neuroeffector junction by inhibiting or interfering with the release and/or distribution of norepinephrine, rather than acting at the effector cell by inhibiting the association of norepinephrine with its receptors. It is taken up by norepinephrine transporters. It becomes concentrated in NE transmitter vesicles, replacing NE in these vesicles. This leads to a gradual depletion of NE stores in the nerve endings. Once inside the terminal it blocks the release of noradrenaline in response to arrival of an action potential. In contrast to ganglionic blocking agents, debrisoquin suppresses equally the responses mediated by alpha-and beta-adrenergic receptors but does not produce parasympathetic blockade. Since sympathetic blockade results in modest decreases in peripheral resistance and cardiac output, debrisoquin lowers blood pressure in the supine position. It further reduces blood pressure by decreasing the degree of vasoconstriction that normally results from reflex sympathetic nervous activity upon assumption of the upright posture, thus reducing venous return and cardiac output more. Pharmacodynamics Debrisoquin is an adrenergic neuron-blocking drug similar in effects to guanethidine. It is a substrate for a polymorphic cytochrome P-450 enzyme. Persons with certain isoforms of this enzyme are unable to properly metabolize this and many other clinically important drugs. They are commonly referred to as having a debrisoquin 4-hydroxylase polymorphism. |
Molecular Formula |
C10H13N3
|
---|---|
Molecular Weight |
175.23032
|
Exact Mass |
175.111
|
CAS # |
1131-64-2
|
Related CAS # |
Debrisoquin hemisulfate;581-88-4
|
PubChem CID |
2966
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.24g/cm3
|
Boiling Point |
309.8ºC at 760mmHg
|
Melting Point |
278-280 °C
278 - 280 °C |
Flash Point |
141.1ºC
|
Vapour Pressure |
0.000626mmHg at 25°C
|
Index of Refraction |
1.649
|
LogP |
1.676
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
1
|
Rotatable Bond Count |
1
|
Heavy Atom Count |
13
|
Complexity |
202
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C1=CC=C2CN(CCC2=C1)C(=N)N
|
InChi Key |
JWPGJSVJDAJRLW-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C10H13N3/c11-10(12)13-6-5-8-3-1-2-4-9(8)7-13/h1-4H,5-7H2,(H3,11,12)
|
Chemical Name |
3,4-dihydro-1H-isoquinoline-2-carboximidamide
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 5.7068 mL | 28.5339 mL | 57.0679 mL | |
5 mM | 1.1414 mL | 5.7068 mL | 11.4136 mL | |
10 mM | 0.5707 mL | 2.8534 mL | 5.7068 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.