yingweiwo

Cytochalasin H

Cat No.:V52203 Purity: ≥98%
Cytochalasin H is a naturally occurring compound extracted from the fungus Phomopsis sp.
Cytochalasin H
Cytochalasin H Chemical Structure CAS No.: 53760-19-3
Product category: Apoptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Cytochalasin H is a naturally occurring compound extracted from the fungus Phomopsis sp. Cytochalasin H inhibits cell growth and causes apoptosis. Cytochalasin H has anti-angiogenic activity. Cytochalasin H is an antibiotic with anti-bacterial effect.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Cytochalasin H (24–72 h) suppresses the growth of A549 cells with an IC50 value of 159.5 µM[1]. A549 cells undergo apoptosis when exposed to cytochalasin H (0–50 µM; 48 h), which also stops the cell cycle in the G2/M phase and modifies the expression of proteins linked to apoptosis [1]. Antibacterial activity of cytochalasin H (1-512 μg/mL) is demonstrated against Staphylococcus aureus, Gram-positive bacteria, and MDR enteric pathogens [3].
ln Vivo
In Balb/cnu/nu mice, cytochalasin H (2.5 mg/kg; ip) slows the growth of A549 xenograft tumors [2].
Cell Assay
Apoptosis Analysis[1]
Cell Types: A549 cells
Tested Concentrations: 0, 6.25, 12.5, 25 and 50 µM
Incubation Duration: 48 h
Experimental Results: Induced apoptosis in a dose-dependent manner in the A549 cells.

Cell Cycle Analysis[1]
Cell Types: A549 cells
Tested Concentrations: 0, 6.25, 12.5, 25 and 50 µM
Incubation Duration: 48 h
Experimental Results: Arrested cell cycle at the G2 /M phase and sub-G1 peaks.

Western Blot Analysis[1]
Cell Types: A549 cells
Tested Concentrations: 0, 6.25, 12.5, 25 and 50 µM
Incubation Duration: 48 h
Experimental Results: Increased the protein expression levels of Bax, P53 and cleaved caspase-3 and diminished the protein expression levels of Bcl-xL, Bcl-2 and full-length caspase-3.
Animal Protocol
Animal/Disease Models: male Balb/cnu/nu (nude) mice with A549 xenograft[2]
Doses: 2.5 mg/kg
Route of Administration: intraperitoneal (ip)injection; 3 injections/week,for 80 days
Experimental Results: Attenuated tumor growth in vivo.
References

[1]. Cytochalasin H isolated from mangrove‑derived endophytic fungus induces apoptosis and inhibits migration in lung cancer cells. Oncol Rep. 2018 Jun;39(6):2899-2905.

[2]. In Vivo Anti-tumor Effects of the Ethanol Extract of Gleditsia sinensis Thorns and Its Active Constituent, Cytochalasin H. Biol Pharm Bull. 2015;38(6):909-12.

[3]. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement Altern Med. 2016 Nov 14;16(1):462.

Additional Infomation
Cytochalasins are mycotoxins that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result, they can change cellular morphology, inhibit cellular processes such as cell division, and cause cells to undergo apoptosis. Cytochalasins also have the ability to permeate cell membranes, prevent cellular translocation, cause cells to enucleate, and affect other aspects of biological processes unrelated to actin polymerization. Cytochalasin H is has been isolated from the fungus Phomopsis paspali. It also regulates plant growth and has shown CNS activity. (A2910, A2911, L1913, L1916)
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C30H39NO5
Exact Mass
493.283
CAS #
53760-19-3
PubChem CID
5351303
Appearance
Typically exists as solid at room temperature
Density
1.19g/cm3
Boiling Point
676.5ºC at 760mmHg
Melting Point
252-258ºC
Flash Point
362.9ºC
Index of Refraction
1.591
LogP
4.066
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
4
Heavy Atom Count
36
Complexity
920
Defined Atom Stereocenter Count
0
SMILES
CC1C/C=C\C2C(C(=C)C(C3C2(C(/C=C/C(C1)(C)O)OC(=O)C)C(=O)NC3Cc4ccccc4)C)O
InChi Key
NAEWXXDGBKTIMN-BBXOWAOSSA-N
InChi Code
InChI=1S/C30H39NO5/c1-18-10-9-13-23-27(33)20(3)19(2)26-24(16-22-11-7-6-8-12-22)31-28(34)30(23,26)25(36-21(4)32)14-15-29(5,35)17-18/h6-9,11-15,18-19,23-27,33,35H,3,10,16-17H2,1-2,4-5H3,(H,31,34)/b13-9+,15-14+
Chemical Name
[(3E,9E)-16-benzyl-5,12-dihydroxy-5,7,14-trimethyl-13-methylidene-18-oxo-17-azatricyclo[9.7.0.01,15]octadeca-3,9-dien-2-yl] acetate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us