yingweiwo

Conglobatin (FW-04-806)

Alias: 72263-05-9; 3,5,7,11,13,15-Hexamethyl-8,16-bis(1,3-oxazol-5-ylmethyl)-1,9-dioxacyclohexadeca-3,11-diene-2,10-dione; (3E,5R,11E)-3,5,7S,11,13R,15S-hexamethyl-8S,16S-bis(5-oxazolylmethyl)-1,9-dioxacyclohexadeca-3,11-diene-2,10-dione
Cat No.:V52225 Purity: ≥95%
Conglobatin (FW-04-806) is a macrolide dilactone extracted from cultures of Streptomyces conglobatus.
Conglobatin (FW-04-806)
Conglobatin (FW-04-806) Chemical Structure CAS No.: 72263-05-9
Product category: Apoptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Conglobatin (FW-04-806) is a macrolide dilactone extracted from cultures of Streptomyces conglobatus. Conglobatin is an orally bioactive Hsp90 inhibitor that binds to the N-terminal domain of Hsp90 and disrupts the formation of the Hsp90-Cdc37 complex. Conglobatin causes apoptosis in human breast cancer cells and esophageal squamous cell carcinoma cells and displays anticancer effect in vivo.
Biological Activity I Assay Protocols (From Reference)
Targets
HSP90
ln Vitro
Conglobatin 6.25-100 μM; 48 h) significantly inhibits the proliferation of MCF-7 and SKBR3 cells with IC50s of 12.11 and 39.44 μM, respectively[2]. EC109, KYSE70, KYSE450, KYSE150, KYSE180, and KYSE510 cells exhibit inhibited cell proliferation in response to conglobatin, with IC50 values of 16.43, 15.89, 10.94, 10.50, 10.28, and 9.31 μM, respectively[3]. SKBR3 and MCF-7 cells exhibit a clear G2/M phase arrest when exposed to conglobatin (10–40 μM) for a 24-hour period. Conglobatin causes SKBR3 and MCF-7 cells to undergo apoptosis via caspase-dependent mechanisms[2]. Hsp90 client protein levels are decreased and proteasome-dependent degradation is induced by conglobatin (10–40 μM; 3–24 h)[2]. binds to Hsp90's N-terminal, inhibiting Hsp90/Cdc37 chaperone/co-chaperone interactions but having no effect on Hsp90's ability to bind ATP[2].
FW-04-806 binds to the N-terminal of Hsp90. FW-04-806 does not affect ATP-binding capability of Hsp90, but inhibits Hsp90/Cdc37 chaperone/co-chaperone interactions. FW-04-806 decreases Hsp90 client protein levels and induces proteasome-dependent degradation. FW-04-806 inhibits growth, induces cell cycle arrest, induces apoptosis, and downregulates the expression of anti-apoptotic proteins.[2]
ln Vivo
In SKBR3 and MCF-7 human breast cancer xenograft models, conglobatin (50-200 mg/kg; ig q3d for 24 d) dose-dependently suppresses the growth of tumors[2]. In low-toxicity tumor xenograft models, EC109 and KYSE510, conglobatin (4–8 mg/kg; intraperitoneally every day for 21 days) suppresses the growth of tumors.[3]
FW-04-806 inhibits the tumor growth of SKBR3 and MCF-7 tumor xenograft models [2]
SKBR3 and MCF-7 human breast cancer xenografts were established to assess the chemotherapeutic potential of FW-04-806. The antitumor activity of FW-04-806 at three doses (50, 100, and 200 mg/kg per dose i.g., q3d) were determined. ADM (4 mg/kg per dose i.p., q3d) was used as a positive control. The results demonstrated that FW-04-806 inhibited tumor growth in the SKBR3 and MCF-7 xenograft models in a dose-dependent manner (Figure 5A and B). Compared with the vehicle group, the three increasing doses of FW-04-806 showed, respectively, inhibition of tumor growth at a rate of 39.1% (P = 0.009), 52.7% (P = 0.003), and 67.5% (P = 0.0007) in the SKBR3 cell line groups and 27.3% (P = 0.021), 39.8% (P = 0.004), 54.3% (P = 0.001) in the MCF-7 cell line groups. Notably, the antitumor activity of high-dose FW-04-806 (0.37 ± 0.04 g, 67.5%) was better than positive control group(0.39 ± 0.04 g, 64.9%, P = 0.0008).All animals survived FW-04-806 treatment without appreciable adverse effects in terms of body weight loss or other signs of toxicity during the treatment (Figure 5C and D). Liver and renal function was similar between FW-04-806-treated and control mice. Additionally, lung, liver, heart, and kidneys of mice showed no histological abnormalities at the end of drug treatment (data not shown). This outcome demonstrates that FW-04-806 was well tolerated.
Enzyme Assay
ATP-Sepharose binding assay [2]
ATP-Sepharose binding assay was modified base on previous protocol. Different concentrations of FW-04-806 or 17AAG were added into recombinant NBD Hsp90 protein (10 μg), and then mixtures were incubated with 25 µL preequilibrated γ-phosphate-linked ATP-Sepharose in 200 µL incubation buffer (10 mM Tris–HCl, 50 mM KCl, 5 mM MgCl2, 20 mM Na2MoO4 , 0.01% NP-40, pH 7.5) for 4 h at 4°C. The protein bound to Sepharose beads was separated with 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and assayed with protein immunoblotting.
Colorimetric determination of ATPase activity [2]
Malachite green reagent was prepared on the day of use and contained malachite green (0.0812%, w/v), polyvinyl alcohol (2.32%, w/v, dissolves with difficulty and requires heating), ammonium molybdate (5.72%, w/v, in 6 M HCl), and argon water mixed in a ratio of 2:1:1:2 to a golden yellow solution. The assay buffer consisted of 100 mM Tris–HCl, 20 mM KCl, and 6 mM MgCl2, with a pH of 7.4. The experiments were performed in 100 μL of test solution containing 80 μL of malachite green reagent. The test solution contained 0.5 μM Hsp90 protein, 1 mM ATP, and 25, 50, 100, or 200 μM FW-04-806 or vehicle (DMSO).
Cell Assay
Cell Proliferation Assay[2]
Cell Types: SKBR3 and MCF-7 cells
Tested Concentrations: 6.25, 12.5, 25, 50, 100 μM
Incubation Duration: 48 hrs (hours)
Experimental Results: Inhibited the proliferation of SKBR3 and MCF-7 cells in a dose-dependent manner.

Cell Cycle Analysis[2]
Cell Types: SKBR3 and MCF-7 cells
Tested Concentrations: 10, 20, 40 μM
Incubation Duration: 24 hrs (hours)
Experimental Results: Increased the G2/M cell population and diminished the population in the S and G0/G1 phases.

Western Blot Analysis[2]
Cell Types: SKBR3 and MCF-7 cells
Tested Concentrations: 10, 20, 40 μM
Incubation Duration: 3, 6, 12, 24 hrs (hours)
Experimental Results: diminished the levels of the client proteins HER2, p-HER2, Raf-1, Akt, and p-Akt in a dose and time-dependent manner in SKBR3 cells. decreased the levels of the client proteins Raf-1, Akt, and p-Akt in a dose and time -dependent manner in MCF-7 cells.
Animal Protocol
Animal/Disease Models: BALB/c (nu/nu) athymic mice with SKBR3 and MCF-7 tumor xenograft[2]
Doses: 50, 100, 200 mg/kg
Route of Administration: po (oral gavage) every 3 days for 24 days
Experimental Results: demonstrated inhibition of tumor growth at a rate of 39.1%, 52.7%, and 67.5% in the SKBR3 cell line groups and 27.3%, 39.8%, 54.3% in the MCF-7 cell line groups at the three increasing doses, respectively. Was well tolerated.
Animals, tumor xenografts, and test agents for in vivo studies and efficacy [2]
BALB/c (nu/nu) athymic mice were used. For SKBR3 and MCF-7 xenografts, 6-mm3 tumor fragments were implanted into the subcutaneous tissue of the axillary region using a trocar needle, and the animals were randomly divided into groups (n = 6) when the bearing tumor reached approximately 20 mm3. FW-04-806 was suspended at the desired concentration for each dose group in an aqueous vehicle containing 10% ethanol, 10% polyethylene glycol 400, and 10% Tween 80. The control group was given 0.4 mL/mouse vehicle solution i.g.; mice in other groups were given 50, 100, or 200 mg/kg of FW-04-806. Doxorubicin hydrochloride was purchased as 10 mg injections and diluted with saline as necessary to achieve the prescribed concentration.
References

[1]. Conglobatin, a novel macrolide dilactone from Streptomyces conglobatus ATCC 31005. J Antibiot (Tokyo). 1979 Sep;32(9):874-7.

[2]. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer. 2014 Jun 14;13:150.

[3]. Macrolide analog F806 suppresses esophageal squamous cell carcinoma (ESCC) by blocking β1 integrin activation. Oncotarget. 2015 Jun 30;6(18):15940-52.

Additional Infomation
Conglobatin has been reported in Streptomyces conglobatus with data available.
Fermentation of deposited cultures of Streptomyces conglobatus, known to produce the polyether antibiotic, ionomycin has resulted in the isolation and characterization of a second metabolite, conglobatin (C28H38N2O6). X-Ray analysis revealed a dimeric macrolide dilactone structure for conglobatin, similar to the structures of the mold metabolites vermiculin and pyrenophorin, from which the absolute configuration of conglobatin has been inferred. The dimer consists of two molecules of 7-hydroxy-8-oxazoyl-2,4,6-trimethyl-2-octenoic acid joined by two ester linkages. [1]
Background: Heat shock protein 90 (Hsp90) is a promising therapeutic target and inhibition of Hsp90 will presumably result in suppression of multiple signaling pathways. FW-04-806, a bis-oxazolyl macrolide compound extracted from China-native Streptomyces FIM-04-806, was reported to be identical in structure to the polyketide Conglobatin. Methods: We adopted the methods of chemproteomics, computational docking, immunoprecipitation, siRNA gene knock down, Quantitative Real-time PCR and xenograft models on the research of FW-04-806 antitumor mechanism, through the HER2-overexpressing breast cancer SKBR3 and HER2-underexpressing breast cancer MCF-7 cell line. Results: We have verified the direct binding of FW-04-806 to the N-terminal domain of Hsp90 and found that FW-04-806 inhibits Hsp90/cell division cycle protein 37 (Cdc37) chaperone/co-chaperone interactions, but does not affect ATP-binding capability of Hsp90, thereby leading to the degradation of multiple Hsp90 client proteins via the proteasome pathway. In breast cancer cell lines, FW-04-806 inhibits cell proliferation, caused G2/M cell cycle arrest, induced apoptosis, and downregulated Hsp90 client proteins HER2, Akt, Raf-1 and their phosphorylated forms (p-HER2, p-Akt) in a dose and time-dependent manner. Importantly, FW-04-806 displays a better anti-tumor effect in HER2-overexpressed SKBR3 tumor xenograft model than in HER2-underexpressed MCF-7 model. The result is consistent with cell proliferation assay and in vitro apoptosis assay applied for SKBR-3 and MCF-7. Furthermore, FW-04-806 has a favorable toxicity profile. Conclusions: As a novel Hsp90 inhibitor, FW-04-806 binds to the N-terminal of Hsp90 and inhibits Hsp90/Cdc37 interaction, resulting in the disassociation of Hsp90/Cdc37/client complexes and the degradation of Hsp90 client proteins. FW-04-806 displays promising antitumor activity against breast cancer cells both in vitro and in vivo, especially for HER2-overexpressed breast cancer cells. [2]
The paucity of new drugs for the treatment of esophageal squamous cell carcinoma (ESCC) limits the treatment options. This study characterized the therapeutic efficacy and action mechanism of a novel natural macrolide compound F806 in human ESCC xenograft models and cell lines. F806 inhibited growth of ESCC, most importantly, it displayed fewer undesirable side effects on normal tissues in two human ESCC xenograft models. F806 inhibited proliferation of six ESCC cells lines, with the half maximal inhibitory concentration (IC50) ranging from 9.31 to 16.43 μM. Furthermore, F806 induced apoptosis of ESCC cells, contributing to its growth-inhibitory effect. Also, F806 inhibited cell adhesion resulting in anoikis. Mechanistic studies revealed that F806 inhibited the activation of β1 integrin in part by binding to a novel site Arg610 of β1 integrin, suppressed focal adhesion formation, decreased cell adhesion to extracellular matrix and eventually triggered apoptosis. We concluded that F806 would potentially be a well-tolerated anticancer drug by targeting β1 integrin, resulting in anoikis in ESCC cells. [3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H38N2O6
Exact Mass
498.273
Elemental Analysis
C, 67.45; H, 7.68; N, 5.62; O, 19.25
CAS #
72263-05-9
PubChem CID
6440452
Appearance
White to off-white solid powder
Density
1.06 g/cm3
Boiling Point
673.4ºC at 760 mmHg
Flash Point
361.1ºC
Index of Refraction
1.484
LogP
5.502
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
4
Heavy Atom Count
36
Complexity
746
Defined Atom Stereocenter Count
6
SMILES
C[C@H]1/C=C(\C(=O)O[C@H]([C@H](C[C@H](/C=C(\C(=O)O[C@H]([C@H](C1)C)CC2=CN=CO2)/C)C)C)CC3=CN=CO3)/C
InChi Key
LAJRJVDLKYGLOO-NLISZJEWSA-N
InChi Code
InChI=1S/C28H38N2O6/c1-17-7-19(3)25(11-23-13-29-15-33-23)35-28(32)22(6)10-18(2)8-20(4)26(12-24-14-30-16-34-24)36-27(31)21(5)9-17/h9-10,13-20,25-26H,7-8,11-12H2,1-6H3/b21-9-,22-10-/t17-,18-,19+,20+,25+,26+/m1/s1
Chemical Name
(3Z,5R,7S,8S,11Z,13R,15S,16S)-3,5,7,11,13,15-hexamethyl-8,16-bis(1,3-oxazol-5-ylmethyl)-1,9-dioxacyclohexadeca-3,11-diene-2,10-dione
Synonyms
72263-05-9; 3,5,7,11,13,15-Hexamethyl-8,16-bis(1,3-oxazol-5-ylmethyl)-1,9-dioxacyclohexadeca-3,11-diene-2,10-dione; (3E,5R,11E)-3,5,7S,11,13R,15S-hexamethyl-8S,16S-bis(5-oxazolylmethyl)-1,9-dioxacyclohexadeca-3,11-diene-2,10-dione
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us