Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Caspase-9
|
---|---|
ln Vitro |
We cloned and characterized a novel Bombyx mori homologue (bm-dronc) of Drosophila melanogaster dronc (dm-dronc), which could encode a polypeptide of 438 amino acid residues. Bm-Dronc shares relatively low amino acid sequence identities of 25% and 26% with Dm-Dronc and Aedes aegypti Dronc (Aa-Dronc), respectively. Bm-Dronc has the sequence QACRG surrounding the catalytic site (C), which is consistent with the QAC(R/Q/G)(G/E) consensus sequence in most caspases but distinct from the sequences PFCRG and SICRG of Dm-Dronc and Aa-Dronc, respectively. Bm-Dronc possesses a long N-terminal prodomain containing a caspase recruitment domain (CARD), a p20 domain and a p10 domain, exhibiting cleavage activities on synthetic substrates Ac-VDVAD-AMC, Ac-IETD-AMC and Ac-LEHD-AMC, which are preferred by human initiator caspases-2, -8 and -9, respectively. Bm-Dronc transiently expressed in insect cells and Escherichia coli cells underwent spontaneous cleavage and caused apoptosis and stimulation of caspase-3-like protease activity in various lepidopteran cell lines, but not in the dipteran cell line D. melanogaster S2. The apoptosis and the stimulation of caspase-3-like protease activity induced by Bm-Dronc overexpression were abrogated upon transfection with either a double-stranded RNA against bm-dronc or a plasmid expressing functional anti-apoptotic protein Hycu-IAP3 encoded by the baculovirus Hyphantria cunea multiple nucleopolyhedrovirus (MNPV). Apoptosis induction in BM-N cells by infection with a p35-defective Autographa californica MNPV or exposure to actinomycin D and UV promoted the cleavage of Bm-Dronc. These results indicate that Bm-Dronc serves as the initiator caspase responsible for the induction of caspase-dependent apoptosis. [1]
|
References |
[1]. Cloning and characterization of a dronc homologue in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2011 Nov;41(11):909-21.
[2]. Short peptide tools for monitoring caspase and proteasome activities in embryonal and adult rat brain lysates: an approach for the differential identification of proteases. J Biochem. 2012 Mar;151(3):299-316. |
Additional Infomation |
The numerous caspase-like activities present in nervous tissue can be investigated with labelled peptides. However, the cross-reactivities of peptides with both proteasomes and caspases complicate the analysis of protease activity. The pharmacological features of substrates and inhibitors specific for either caspases or proteasome caspase-like proteases in rat brain lysates were similar or identical to the profiles of commercially purified proteasome preparations. Caspase inhibitors bind directly to active proteasome centres, thus competing with selective antagonists of proteasomes. Separation of lysates by molecular weight does not separate active caspases from proteasomes because these enzymes co-localize under native electrophoresis. The addition of ATP or its analogues is associated with the differential modulation of proteasomal activity, which also leads to ambiguity in the data. However, induced caspase activity could be successfully differentiated from proteasome activity in embryonal brain lysates with the non-selective caspase inhibitors Z-VAD-FMK and Q-VD-OPh and the proteasome inhibitor AdaAhx(3)L(3)VS that are not cross-reactive. This strategy is proposed for the simultaneous examination of caspases and proteasomes using proteolysis experiments. The present study reveals that all of the caspase-like activities in the tissue lysates of non-injured adult rat brains were related to proteasomal caspase-like activities. [2]
|
Molecular Formula |
C33H41N7O11
|
---|---|
Molecular Weight |
711.72
|
Exact Mass |
711.286
|
CAS # |
292633-16-0
|
PubChem CID |
25108635
|
Sequence |
Ac-Leu-Glu-His-Asp-AMC;
|
SequenceShortening |
LEHD
|
Appearance |
Typically exists as White to off-white solid at room temperature
|
Density |
1.4±0.1 g/cm3
|
Boiling Point |
1258.1±65.0 °C at 760 mmHg
|
Flash Point |
714.6±34.3 °C
|
Vapour Pressure |
0.0±0.3 mmHg at 25°C
|
Index of Refraction |
1.605
|
LogP |
0.94
|
Hydrogen Bond Donor Count |
8
|
Hydrogen Bond Acceptor Count |
12
|
Rotatable Bond Count |
18
|
Heavy Atom Count |
51
|
Complexity |
1370
|
Defined Atom Stereocenter Count |
4
|
SMILES |
CC(C[C@H](NC(C)=O)C(N[C@H](C(N[C@H](C(N[C@H](C(NC1=CC2=C(C(C)=CC(O2)=O)C=C1)=O)CC(O)=O)=O)CC3=CN=CN3)=O)CCC(O)=O)=O)C
|
InChi Key |
ZILMZAQLFLKJPG-QORCZRPOSA-N
|
InChi Code |
InChI=1S/C33H41N7O11/c1-16(2)9-23(36-18(4)41)32(49)38-22(7-8-27(42)43)30(47)39-24(11-20-14-34-15-35-20)33(50)40-25(13-28(44)45)31(48)37-19-5-6-21-17(3)10-29(46)51-26(21)12-19/h5-6,10,12,14-16,22-25H,7-9,11,13H2,1-4H3,(H,34,35)(H,36,41)(H,37,48)(H,38,49)(H,39,47)(H,40,50)(H,42,43)(H,44,45)/t22-,23-,24-,25-/m0/s1
|
Chemical Name |
(4S)-4-[[(2S)-2-acetamido-4-methylpentanoyl]amino]-5-[[(2S)-1-[[(2S)-3-carboxy-1-[(4-methyl-2-oxochromen-7-yl)amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
|
Synonyms |
Ac-LEHD-AMC; 292633-16-0; Ac-Leu-Glu-His-Asp-AMC; Ac-LEHD-AMC (trifluoroacetate salt); Ac-Leu-Glu-His-Asp-AMC trifluoroacetate salt; (4S)-4-[[(2S)-2-acetamido-4-methylpentanoyl]amino]-5-[[(2S)-1-[[(2S)-3-carboxy-1-[(4-methyl-2-oxochromen-7-yl)amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.4050 mL | 7.0252 mL | 14.0505 mL | |
5 mM | 0.2810 mL | 1.4050 mL | 2.8101 mL | |
10 mM | 0.1405 mL | 0.7025 mL | 1.4050 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.