Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Targets |
Caspase-8
|
---|---|
References | |
Additional Infomation |
Because of the intimate role of caspase-8 in apoptosis signaling pathways from FAS, TNFR1, and other death receptors, the enzyme is a potentially important therapeutic target. We have generated an Escherichia coli expression construct for caspase-8 in which a His-tag sequence is inserted ahead of codon 217 of caspase-8. The strain produced a significant amount of soluble His-tagged 31-kDa inactive single-chain enzyme precursor. This 31-kDa protein could be purified to 98% purity. Hydroxyapatite resolved the enzyme into two species, one with the appropriate 31,090 relative mass and the other with 178 units additional mass. The latter proved to result from E. coli-based modification of the His-tag with one equivalent of glucono-1,5-lactone. The purified proteins could be activated by autoproteolysis to the appropriate 19- plus 11-kDa enzyme by the addition of dithiothreitol in appropriate buffer conditions. This yielded an enzyme with specific activity of 4-5 units/mg against 200 microM Ac-IETD-pNA at 25 degrees C. The fully active protein was used in a high-throughput screen for inhibitors of caspase-8. A preliminary robustness screen demonstrated that caspase-8 is susceptible to reactive oxygen-based inactivation in the presence of dithiothreitol (DTT) but not in the presence of cysteine. Investigation into the mechanism of this inactivation showed that quinone-like compounds were reduced by DTT establishing a reactive oxygen generating redox cycle the products of which (likely H(2)O(2)) inactivated the enzyme. A new class of caspase-8 inhibitors, steroid-derived diacids, with affinity in the low micromolar range were discovered in the refined screen. Structure--activity investigation of the inhibitors showed that both the steroid template and the acid moieties were required for activity. [1]
|
Molecular Formula |
C27H38N6O12
|
---|---|
Molecular Weight |
638.62
|
Exact Mass |
638.254
|
CAS # |
219138-21-3
|
PubChem CID |
25108782
|
Sequence |
Ac-Ile-Glu-Thr-Asp-pNA
|
SequenceShortening |
Ac-IETD-pNA; IETD
|
Appearance |
White to off-white solid powder
|
Density |
1.4±0.1 g/cm3
|
Boiling Point |
1140.8±65.0 °C at 760 mmHg
|
Flash Point |
643.7±34.3 °C
|
Vapour Pressure |
0.0±0.3 mmHg at 25°C
|
Index of Refraction |
1.583
|
LogP |
1.27
|
Hydrogen Bond Donor Count |
8
|
Hydrogen Bond Acceptor Count |
12
|
Rotatable Bond Count |
17
|
Heavy Atom Count |
45
|
Complexity |
1100
|
Defined Atom Stereocenter Count |
6
|
SMILES |
CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(=O)O)C(=O)NC1=CC=C(C=C1)[N+](=O)[O-])NC(=O)C
|
InChi Key |
FHURKTIGZAIQGR-BQCLNCLCSA-N
|
InChi Code |
InChI=1S/C27H38N6O12/c1-5-13(2)22(28-15(4)35)26(42)30-18(10-11-20(36)37)24(40)32-23(14(3)34)27(43)31-19(12-21(38)39)25(41)29-16-6-8-17(9-7-16)33(44)45/h6-9,13-14,18-19,22-23,34H,5,10-12H2,1-4H3,(H,28,35)(H,29,41)(H,30,42)(H,31,43)(H,32,40)(H,36,37)(H,38,39)/t13-,14+,18-,19-,22-,23-/m0/s1
|
Chemical Name |
(4S)-4-[[(2S,3S)-2-acetamido-3-methylpentanoyl]amino]-5-[[(2S,3R)-1-[[(2S)-3-carboxy-1-(4-nitroanilino)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-5-oxopentanoic acid
|
Synonyms |
Ac-Ile-Glu-Thr-Asp-PNA; AC-IETD-PNA; 219138-21-3; Caspase-8 Chromogenic Substrate I; (4S)-4-[[(2S,3S)-2-acetamido-3-methylpentanoyl]amino]-5-[[(2S,3R)-1-[[(2S)-3-carboxy-1-(4-nitroanilino)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-5-oxopentanoic acid; SCHEMBL4594304;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.5659 mL | 7.8294 mL | 15.6588 mL | |
5 mM | 0.3132 mL | 1.5659 mL | 3.1318 mL | |
10 mM | 0.1566 mL | 0.7829 mL | 1.5659 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.