Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
ln Vivo |
Examining the contribution of important histidine residues (His, His in mouse and His, His, His in human segments) to the Ab-Cu2+ interaction Model is thought to be possible with the β-amyloid(1-16) fragment. β-amyloid (1-16) targets histidine residues that bind to metal ions for oxidation. In Alzheimer's disease senile plaques, copper attaches to Aβ, and β-amyloid (1-16) takes part in the coordination of Cu2+ ions. Cu2+ and Zn2+ have been linked to damage from free radicals and amyloid neurotoxicity [1]. The smallest sequence of amino acids exhibiting a Cu coordination pattern including three histidines (His6, His13, and His14) is β-Amyloid(1-16). It is believed that β-Amyloid (1-16) has a role in metal binding [2]. Zinc ions interact with human beta-amyloid via its metal-binding domains 1–16. The two polypeptide chains of the rat Aβ(1-16) dimer have opposing C-tail orientations, which prevents the rat Aβ dimer from assembling into oligomer aggregates. Consequently, drug resistance could be caused by variations in the structure of the zinc-binding site between human and rat β-amyloid (1-16), their capacity to form regular cross-monomer connections, and the orientation of their hydrophobic C-tails. Rats are at risk for Alzheimer's disease [3].
|
---|---|
References |
|
Molecular Formula |
C84H119N27O28
|
---|---|
Molecular Weight |
1955.01
|
Exact Mass |
1953.871
|
CAS # |
131580-10-4
|
PubChem CID |
146156923
|
Appearance |
White to off-white solid powder
|
Density |
1.6±0.1 g/cm3
|
Index of Refraction |
1.696
|
LogP |
-6.41
|
Hydrogen Bond Donor Count |
31
|
Hydrogen Bond Acceptor Count |
34
|
Rotatable Bond Count |
65
|
Heavy Atom Count |
139
|
Complexity |
4200
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
PKSRFXGDLPWBBS-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C84H119N27O28/c1-41(2)68(82(137)109-59(30-47-35-92-40-97-47)80(135)107-57(28-45-33-90-38-95-45)78(133)102-51(18-21-62(87)114)73(128)104-54(83(138)139)12-7-8-24-85)111-75(130)53(20-23-65(118)119)103-76(131)55(27-44-14-16-48(113)17-15-44)99-63(115)36-94-71(126)61(37-112)110-81(136)60(32-67(122)123)108-79(134)58(29-46-34-91-39-96-46)106-72(127)50(13-9-25-93-84(88)89)101-77(132)56(26-43-10-5-4-6-11-43)105-74(129)52(19-22-64(116)117)100-69(124)42(3)98-70(125)49(86)31-66(120)121/h4-6,10-11,14-17,33-35,38-42,49-61,68,112-113H,7-9,12-13,18-32,36-37,85-86H2,1-3H3,(H2,87,114)(H,90,95)(H,91,96)(H,92,97)(H,94,126)(H,98,125)(H,99,115)(H,100,124)(H,101,132)(H,102,133)(H,103,131)(H,104,128)(H,105,129)(H,106,127)(H,107,135)(H,108,134)(H,109,137)(H,110,136)(H,111,130)(H,116,117)(H,118,119)(H,120,121)(H,122,123)(H,138,139)(H4,88,89,93)
|
Chemical Name |
6-amino-2-[[5-amino-2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[[2-[2-[(2-amino-3-carboxypropanoyl)amino]propanoylamino]-4-carboxybutanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: (1). This product is not stable in solution, please use freshly prepared working solution for optimal results. (2). Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.5115 mL | 2.5575 mL | 5.1151 mL | |
5 mM | 0.1023 mL | 0.5115 mL | 1.0230 mL | |
10 mM | 0.0512 mL | 0.2558 mL | 0.5115 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.