yingweiwo

Zavegepant (Vazegepant; BHV-3500; BMS 742413)

Alias: ZavzpretVazegepant BMS 742413 BHV-3500BMS-742413 BHV 3500BMS742413 BHV3500
Cat No.:V50888 Purity: ≥98%
Zavegepant (Vazegepant; BHV-3500; Zavzpret; BMS 742413), CGRP receptor antagonist that has been approved inFeb 2023 by FDA for treatingmigraine.
Zavegepant (Vazegepant; BHV-3500; BMS 742413)
Zavegepant (Vazegepant; BHV-3500; BMS 742413) Chemical Structure CAS No.: 1337918-83-8
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Zavegepant (Vazegepant; BHV-3500; Zavzpret; BMS 742413), CGRP receptor antagonist that has been approved in Feb 2023 by FDA for treating migraine.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
After a single intranasal dose of zavegepant (10 mg), the peak plasma concentration was detected approximately 30 minutes later. The absolute bioavailability of zavegepant administered with a nasal spray is approximately 5%. Up to 40 mg (4 times the recommended dose of 10 mg), a single intranasal dose of zavegepant has slightly less than dose-proportional pharmacokinetics. There was no evidence of zavegepant accumulation with once-a-day zavegepant taken for 14 days. Compared to normal subjects, patients with moderate hepatic impairment (Child-Pugh B) have a Cmax and AUC 16% and 1.9-fold higher, respectively; however, these changes are not expected to be clinically significant based on clinical safety experience and minimal accumulation of drug exposures. In subjects with estimated creatinine clearance (CLcr) greater or equal to 30 mL/min, the differences in zavegepant pharmacokinetics are not expected to be clinically significant. In patients with a CLcr from 15 to 29 mL/min, zavegepant exposure may increase.
Zavegepant is mainly excreted via the biliary/fecal route, while the renal route plays a minor role in its elimination. In healthy male subjects given a single dose of 5 mg [14C]-zavegepant intravenously, approximately 80% and 11% of the dose were recovered as unchanged zavegepant in feces and urine, respectively.
Intranasal zavegepant has a mean apparent volume of distribution of approximately 1774 L.
Intranasal zavegepant has a mean apparent clearance of 266 L/h.
Metabolism / Metabolites
_In vitro_, zavegepant is mainly metabolized by CYP3A4, and by CYP2D6 to a lesser extent. After a single intravenous dose of [14C]-zavegepant (5 mg), approximately 90% of the circulating dose was unchanged zavegepant. None of the zavegepant metabolites detected in plasma were found at a proportion higher than 10% (no major metabolites).
Biological Half-Life
Following a 10 mg dose, intranasal zavegepant has an effective half-life of 6.55 hours.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
There is no published experience with zavegepant during breastfeeding. Zavegepant is 90% protein bound, so levels in milk are likely low. If zavegepant is required by the mother of an older infant, it is not a reason to discontinue breastfeeding, but until more data become available, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Zavegepant has a plasma protein binding of approximately 90%.
References
J Med Chem . 2020 Jul 9;63(13):6600-6623.
Additional Infomation
Pharmacodynamics
The relationship between the pharmacodynamic activity of zavegepant and its mechanism of action is unclear. No clinically relevant differences were detected when comparing the resting blood pressure of healthy volunteers given sumatriptan and zavegepant concomitantly to those given sumatriptan alone. Using zavegepant leads to a clinically relevant QT interval prolongation at a dose up to 4 times the recommended daily dose. The use of zavegepant may cause hypersensitivity reactions, such as facial swelling and urticaria. If a hypersensitivity reaction occurs, the product label recommends discontinuing zavegepant and initiating appropriate therapy.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C36H46N8O3
Molecular Weight
638.817
Exact Mass
638.369
CAS #
1337918-83-8
Related CAS #
1414976-20-7 (HCl);1337918-83-8;
PubChem CID
53472683
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
933.7±65.0 °C at 760 mmHg
Flash Point
518.5±34.3 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.648
LogP
4.3
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
6
Heavy Atom Count
47
Complexity
1160
Defined Atom Stereocenter Count
1
SMILES
CC1=CC(=CC2=C1NN=C2)C[C@H](C(=O)N3CCN(CC3)C4CCN(CC4)C)NC(=O)N5CCC(CC5)C6=CC7=CC=CC=C7NC6=O
InChi Key
JJVAPHYEOZSKJZ-JGCGQSQUSA-N
InChi Code
InChI=1S/C36H46N8O3/c1-24-19-25(20-28-23-37-40-33(24)28)21-32(35(46)43-17-15-42(16-18-43)29-9-11-41(2)12-10-29)39-36(47)44-13-7-26(8-14-44)30-22-27-5-3-4-6-31(27)38-34(30)45/h3-6,19-20,22-23,26,29,32H,7-18,21H2,1-2H3,(H,37,40)(H,38,45)(H,39,47)/t32-/m1/s1
Chemical Name
(R)-N-(3-(7-methyl-1H-indazol-5-yl)-1-(4-(1-methylpiperidin-4-yl)piperazin-1-yl)-1-oxopropan-2-yl)-4-(2-oxo-1,2-dihydroquinolin-3-yl)piperidine-1-carboxamide
Synonyms
ZavzpretVazegepant BMS 742413 BHV-3500BMS-742413 BHV 3500BMS742413 BHV3500
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5654 mL 7.8269 mL 15.6539 mL
5 mM 0.3131 mL 1.5654 mL 3.1308 mL
10 mM 0.1565 mL 0.7827 mL 1.5654 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us